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Abstract Mesh simplification has
received tremendous attention over
the years. Most of the previous
work in this area deals with a proper
choice of error measures to guide
the simplification. Preserving the
topological characteristics of the
mesh and possibly of data attached
to the mesh is a more recent topic
and the subject of this paper. We
introduce a new topology-preserving
simplification algorithm for triangu-
lar meshes, possibly nonmanifold,
with embedded polylines. In this
context, embedded means that the
edges of the polylines are also edges
of the mesh. The paper introduces
a robust test to detect if the collapse
of an edge in the mesh modifies
either the topology of the mesh
or the topology of the embedded
polylines. This validity test is derived
using combinatorial topology results.
More precisely, we define a so-called
extended complex from the input
mesh and the embedded polylines.

We show that if an edge collapse of
the mesh preserves the topology of
this extended complex, then it also
preserves both the topology of the
mesh and the embedded polylines.
Our validity test can be used for any
2-complex mesh, including nonman-
ifold triangular meshes, and can be
combined with any previously intro-
duced error measure. Implementation
of this validity test is described. We
demonstrate the power and versatility
of our method with scientific data
sets from neuroscience, geology, and
CAD/CAM models from mechanical
engineering.

Keywords Computational geometry
and its applications · LOD tech-
niques · Multiresolution curves and
surfaces

1 Introduction

We assume the reader is familiar with mesh simplification
techniques in general. Most of the previous works on mesh
simplification are devoted to the development of a specific
scalar error measure, taking into account the geometry of
the mesh and possibly the values of data attached to the
mesh. A more recent topic in mesh simplification is the
preservation of topological characteristics of the mesh and

of data attached to the mesh. In this paper a new topology-
preserving simplification algorithm is introduced for tri-
angular meshes, possibly nonmanifold, in which polylines
are embedded. In this context embedded means that the
edges of the polylines are also edges of the mesh. The
mesh is simplified by repeated edge collapses, following
the classical scheme introduced in previous works. For
each edge of the mesh, the cost of its collapse is computed
and inserted in an ordered heap of edges. The algorithm
iteratively pops the edge collapse, introducing the low-
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est error in the simplified mesh, checks for the validity
of the collapse (i.e., geometry, topology, or attribute con-
sistency), and, if this operation is accepted, updates both
the mesh and the heap. Since the polylines form a sub-
set of the edges of the mesh, edge collapses modify both
the mesh and the set of polylines embedded in the mesh.
The main contribution of this paper is a robust validity
algorithm that detects whether or not an edge collapse pre-
serves the topology of the mesh as well as the topology of
the embedded polylines. To this end we define a so-called
extended complex that implicitly encodes both topologies.
Thereafter edge collapses that preserve the topology of
this extended complex are detected. We show that these
edge collapses preserve also both the topologies of the
mesh and the embedded polylines. As we will see in this
introduction, the preservation of these topological charac-
teristics is crucial in several applications.

Many application areas may produce meshes with em-
bedded polylines. This work has been motivated by three
applications, for which the topology of the mesh and the
topology of the embedded polylines must be preserved
throughout the simplification.

Neuroscience

One of the great challenges of these years, in neuro-
science, is to automate the brain mapping. As annotating
brains is complicated and time consuming, neuroscientists
are working on a unified atlas created from a collection of
different brains that will later be used to directly transfer
information to the patient. One method of mapping brains
is to segment the cortical surface according to the main
features (i.e., the gyri and the sulci) and to match these
features. This segmentation produces polylines surround-
ing these features on the cortical surface. The topology
of the polylines is simple: they form closed curves with-
out self-intersections. Due to the high complexity of the
surface, preprocessing needs to be done. Simplifiying the
surface while preserving the main folds is one possible
method. In this context it is critical to preserve the top-
ology of the polylines and the mesh: the mesh should
remain a manifold surface, and the polylines should re-
main closed curves without self-intersections.

Geology

Understanding soil quality is fundamental for agriculture
or estimating the health of the environment. Soil surveys
are presented as maps encoding the proportion of each
soil within a specific area. The boundaries of these do-
mains are really important because they will be used to
drive a specific land use (e.g., oil exploitation). In terms of
visualization, data reduction is often used because of the
difference between the area of interest (e.g., country) and
the size of one soil type. While these data are character-
ized by a fairly simple surface representing a height field,

embedded structures such as the boundaries among soil
types can be very complex. It is crucial to preserve the top-
ology formed by these boundaries in order to properly re-
cover the different soil types in the simplified model. Also,
in a volume these layers of soils create multiple surfaces
intersecting each other, which can be seen as a complex
nonmanifold surface.

CAD/CAM

CAD/CAM models are based on a geometry produced
by a modeler and adapted to the design of a mechani-
cal model. Handmade geometry can be highly complex,
and features such as materials can be added to the mesh.
In addition, there is a coherence between the material
interfaces and the geometric features that is important
for the consistency of the whole CAD/CAM model. 2D
numerical simulations based on FEMs (finite element
methods) on a CAD/CAM model produce a triangular
mesh, possibly nonmanifold, in which the edges follow
the geometric features of the CAD/CAM model as well
as the interfaces separating the different materials. Pre-
serving the topology of the polylines formed by these
characteristic edges is essential to maintain the consis-
tency of the CAD/CAM model throughout the simplifica-
tion.

This paper is structured as follows. Section 2 reviews
related works and points out differences with the present
paper. Section 3 reviews the previously introduced topo-
logical tests for edge collapses in 2-complexes, as these
results are used to detect valid edges in the extended
complex. Section 4 explains how the extended complex
is defined and describes the actual implementation of the
validity algorithm. Finally, Sect. 5 presents results in the
different application areas cited above, and Sect. 6 gives
a conclusion with directions for future work.

2 Related work

Research on surface simplification in computer graphics
and scientific visualization has led to a substantial number
of methods within the last 12 years. An exhaustive de-
scription of this field is beyond the scope of this paper, and
one can refer to the many surveys [2, 10, 24] available. In
the remainder of this section we only review the methods
relevant to our work.

2.1 Surface simplification

In order to decimate a discrete surface, different opera-
tors can be applied on its elements (i.e., vertex, edges,
faces). Historically, the first method was region merging
[17], followed by numerous methods such as surface retil-
ing [31], vertex decimation [30], vertex clustering [28],
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subdivision meshes [7], and wavelet decomposition [15].
Among these decimation methods the local iterative edge
collapse operator has been widely used in order to con-
trol precisely the simplification error. These methods de-
pend largely on the metric used to determine the order
of the modifications, and many heuristics have been pro-
posed depending on the application. Particularly relevant
algorithms used progressive meshes [18, 26], tolerance
volumes [16], plane deviations [27], quadric-based met-
rics [11], or memoryless simplification [22]. While this
wide range of methods deals well with geometry, models
used in computer graphics or in solid modeling may have
different nongeometric attributes defined on the surface
that need to be preserved through the simplification pro-
cess.

2.2 Attribute-preserving simplification

Discontinuities are often observed in the nongeometric
attribute field of a surface such as high color variation
due to shadows projected on a surface or texture coor-
dinates defined on vertices. Attribute errors can be esti-
mated on each face to compute an error-bounded sim-
plification [1], treated with dedicated datastructures such
as wedges [19] or integrated into the computation of
a quadric error metric [12]. Erikson and Manocha [8] track
attribute variations by minimizing an error computed on
point clouds defined by these field values. A resampling
of the attributes can also be used as in [3], where a dis-
placement map is computed on high resolution and ap-
plied as a texture on the simplifed mesh. Cohen et al.
[4] dynamically compute a texture deviation metric used
to decouple the sampling of the attributes and to ensure
an error bound of the simplification. In some cases, at-
tributes can describe geometric features of a surface, but
usually specialized structures and algorithms are required,
especially when these features are defined in different di-
mensions.

2.3 Application-driven simplification

Feature-guided simplification provides dedicated error
metrics to integrate strong constraints on subsets of the
original model such as the intersection of roads on a ter-
rain data. These metrics depend largely on the application
because the definition itself of a feature is based on the
field of study. Many methods have been proposed to ex-
tract a collection of piecewise linear curves on a surface
[21, 25, 29]. Once such features have been extracted, asso-
ciated weights can be used to integrate them in any kind
of error measure previously presented like that in [32],
which extends the quadric-based error metric of [11].
User-guided simplification also provides specific error
metrics to simplify chosen features.

Terrain simplification is a standalone branch of mesh
simplification as it has been studied for almost 30 years

and has led to an incredible number of methods. Among
others, [9, 23] provide a survey of this wide field. Several
papers deal with the preservation of the topology of poly-
lines on these terrains. However, due to the nature of ter-
rain data, they are restricted to height field meshes having
a very simple topology. All these methods are either exten-
sions of the Douglas–Peucker [6] algorithm (which does
not deal with topology) for curve simplification or are
based on heuristics defined by the local topology around
the polyline vertices.

Material boundaries are special properties of
CAD/CAM models. Preservation of the material inter-
face through simplification in CAD/CAM applications has
been mentioned in some previous works, including [14]
for volume data. In these cases, the interface is integrated
in a scalar attribute such as color, and the global geometric
appearance is maintained through simplification. Preser-
vation of the topology of a scalar field and isosurfaces
defined on this field has been considered and guaranteed
in several methods such as that in [13].

However, in our framework we are interested in pre-
serving the topology of such properties defined for the
model (i.e., patches of surfaces), for the material bound-
aries (i.e., subsets of the mesh edges), and for the inter-
sections among boundaries (i.e., specific vertices of these
boundaries). Existing methods lack a unique combinato-
rial validity test preserving the topology of all the elements
defined in all dimensions lower than or equal to 3.

2.4 Topology-preserving simplification

Surface mesh simplification algorithms transform a gen-
eral simplicial complex into another one. Edge collapse
is the most widely used operator for removing subsimpli-
cies from input because it allows one to control efficiently
and accurately the deformation introduced in the initial
mesh. Some of these algorithms preserve the topology of
the simplified mesh by investigating the organization of
the triangles around an edge leading to a certain number of
cases. In some situations the edge collapse is rejected as it
would introduce topological errors [20]. A similar treate-
ment can be performed on feature lines based on local tests
in between the edges around a collapse and the triangu-
lation. However, nonmanifold surfaces cannot be treated
with this method and there is no obvious extension to
higher dimensions, in contrast with our results, as pointed
out in Sect. 6.

More recently, Dey et al. [5] have proven that the com-
plex obtained after an edge collapse is homeomorphic
to the first one if the neighborhood of the edge collapse
satisfies the link condition. This result, based on con-
cepts of computational topology, has found increasingly
widespread use, even in volume simplification, as it is
not restrictived to 2-complexes. Especially, nonmanifold
surfaces can be treated with this method using the link
condition.
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3 Preserving the topology of 2-complexes

Appendix A reviews the basic definitions from combina-
torial topology needed in the following sections. Given
a simplicial complex, and an edge (a 2-simplex) in this
complex, detecting if the collapse of this edge modifies the
topology of the complex is a challenging task and is ex-
tensively studied in [5]. For 2- and 3-complexes, necessary
and sufficient conditions have been developed ensuring
that a continuous one-to-one mapping between the com-
plex before edge collapse and the complex after edge col-
lapse exists. These conditions are slightly more restrictive
than topology preservation since the mapping is required
to be the identity outside a neighborhood of the edge being
contracted. In this section we state the results developed in
[5] for 2-complexes, as they will be used later in this paper.
The reader is referred to the original paper for details.

3.1 Order of a simplex in a 2-complex

The order of a simplex τ in a complex K measures the
topological complexity of the neighborhood of τ in K . It
is denoted by ord τ . For a 2-complex, the order of sim-
plices may be 0, 1, or 2. A simplex τ has an order 0 if
St τ is homeomorphic to an open disc (see Appendix A for
definitions). This is the simplest case, where locally the
complex is a 2-manifold. The order is 1 if St τ is homeo-
morphic to p triangles sharing a common edge with p �= 2.
This is, for example, the case for nonmanifold edges and
boundary edges. In all other cases the order of the simplex
is 2. Note that all triangles have order 0 and that edges may
have order 0 or 1 only. Figure 1a illustrates the order of
vertices and edges in a 2-complex.

Boundaries of a 2-complex. Topological tests rely on
a generalized notion of a boundary. The jth boundary in
a 2-complex K is defined as the set of all simplices with
order j or higher:

Bdj K = {τ ∈ K | ord τ ≥ j}.
The 0th boundary of K is K . Figure 1b illustrates the
first and second boundaries of a 2-complex. Note that the

Fig. 1. a Order of simplices in a 2-complex: the green simplices
have order 0, the yellow simplices have order 1, and the red vertices
have order 2. b Edges and vertices in first boundary of 2-complex
shown in a. The two red vertices form the second boundary of this
complex

Fig. 2. Topological test for an edge e = uv: the left and right parts
illustrate, respectively, the first and second conditions. Left: Lkω

0 u
contains the yellow and red vertices and the yellow edges, Lkω

0 v
contains the green and red vertices and green edges, Lkω

0 e con-
tains the red vertices: the first condition is fulfilled. Right: Lkω

1 u
contains the three yellow vertices, Lkω

1 v contains the two green
vertices, the intersection is empty: the second condition is fulfilled

first boundary contains not only the usual boundary edges
but also nonmanifold edges adjacent to three triangles or
more. Since only vertices may have order 2, the second
boundary of a 2-complex is always a set of vertices.

Topological test. Let ω be a dummy vertex, define Kω =
K ∪ (ω · Bd1 K) and Gω = Bd1 K ∪ (ω · Bd2 K). See
Appendix A for the definition of the cone ω · T , where
T is a set of simplices. Let Lkω

0 τ and Lkω
1 τ denote the

link of τ in Kω and Gω, respectively. With all these defini-
tions at hand, one can now state the main result of [5] for
2-complexes.

Topological test:

Theorem 1. Let K be a complex and L be the complex ob-
tained by contracting the edge uv in K. The following two
conditions ensure that L has the same topology as K:

(i) Lkω
0 u ∩ Lkω

0 v = Lkω
0 uv,

(ii) Lkω
1 u ∩ Lkω

1 v = ∅.

Conditions (i) and (ii) are illustrated in Fig. 2 for a non-
manifold edge.

4 Topology-preserving edge collapse with
embedded structures

Let K be a 2-complex and E a set of edges in K . The
closure E of E is a collection of edges and vertices that
may be viewed as a set of several polylines embedded
in K , with possible self-intersections. These polylines to-
gether with the polylines formed by all boundary and non-
manifold edges of K define a 1-complex F = E ∪ Bd1K
whose topology is an important characteristic of the data
and should be preserved. Contracting edges in K possibly
modifies both the topology of K and the topology of F.
Our goal is to develop a robust test to detect which edge
collapse preserves the topology of the 2-complex K to-
gether with the topology of the polylines embedded in
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K . The key idea of the paper is to implicitly encode the
topology of the polylines F and of the embedding com-
plex K in a single extended 2-complex ˜K . Thereafter the
topological test developed in [5] (Sect. 3) can be used to
select the valid edge collapses in the extended 2-complex
˜K . ˜K is built in such a way that valid edge collapses in ˜K
preserve the topology of both K and the embedded poly-
lines F.

4.1 Implicitly encoding the topology of the embedded
structures

We can assume that the collection of edges E contains
only order 0 edges, without changing F: if there is an
order 1 edge in E, it is also in Bd1K . The extended com-
plex ˜K is built by adding to K the cones from the dummy
vertex ω to each edge in E. More precisely:

˜K = K ∪ w · E .

In other words, the embedded edges are extended to a 2D
subcomplex of the extended complex ˜K . Figure 3 illus-
trates an extended complex with two intersecting embed-
ded polylines. The extended complex ˜K is defined such
that its first boundary equals F:
Lemma 1. Bd1 ˜K = F .

Proof. An edge in E has an order 0, i.e., it has exactly two
adjacent triangles in K and three adjacent triangles in ˜K .
Thus it has an order 1 in ˜K . An edge of order 1 in K is not
in E; therefore, it has the same star in K and ˜K and is still
of order 1 in ˜K . Thus we have F ⊂ Bd1 ˜K . Now let e be an
edge of order 1 in ˜K . e has one or three or more triangles
in its star. If e has only one triangle in its star, it is in the
boundary of K . If it has three or more triangles in its star,
it is either a nonmanifold edge of K or an edge in E. Thus
we have also Bd1 ˜K ⊂ F. �

Lemma 1 means that the topology of the embedded
structure F is encoded implicitly in the extended com-
plex ˜K . An edge collapse in K corresponds to an edge
collapse in ˜K . After an edge collapse, the modified set of

Fig. 3. Extended complex: the extended complex is defined by
adding to the mesh all edges and faces connecting a dummy vertex
ω with the vertices and edges of the embedded polylines

polylines F can be retrieved as the set of edges facing the
dummy vertex ω in a triangle. Lemma 2 below, applied to
the extended complex ˜K , proves that if an edge collapse
preserves the topology of ˜K , it also preserves the topology
Bd1 ˜K , i.e., it also preserves the topology of the modified
set of polylines F, since Bd1 ˜K = F from Lemma 1.
Lemma 2. Let K be a 2-complex and uv an edge in K
such that (i) and (ii) are satisfied. Then the collapse of uv
preserves the topology of Bd1K.

Proof. Let

M = Bd1K, and Mω = Bd0(M) ∪ ω · Bd1(M) . (1)

M is a 1-complex: it is the closure of the set of order 1
edges in K . Since M is a 1-complex, it is sufficient to show
that there are no vertices in the intersection of the links of
u and v in Mω. Since Bd1M = Bd1(Bd1K) ⊂ Bd2K , any
vertex in the link of u (resp. v) in Mω is also in the link
of u (resp. v) in Gω. Therefore, condition (ii) implies the
lemma. �

4.2 Implementation of the topological preservation test

In this section we describe the actual implementation of
the algorithm that detects if an edge e = uv can be col-
lapsed without changing the topology of the surface or the
topology of any polyline defined on the triangle edges.
1. Initialization: Set up local variables in the neighbor-

hood of the two vertices u and v of edge e. For each
edge ei adjacent to u or v, add dummy triangles (ω ·
ei) if ei is either on a polyline or in the first bound-
ary of the mesh. This amounts to locally computing the
extended complex.

2. Compute the vertices in Lkω
0 u: Loop through edges

ei adjacent to u in the extended complex. For each edge
ei , store the vertex facing u in Lkω

0 u. In some cases
the opposite vertex is the dummy vertex ω if the edge
is in a polyline or in the first boundary of the mesh.
This case is implicit and is not treated explicitly as the
neighborhoods of u and v have been triangulated by
adding dummy cells using the dummy vertex ω.

3. Compute the edges in Lkω
0 u: Loop through the faces

fi adjacent to u in the extended complex. For each face
fi , store the edge facing u in Lkω

0 u. Figure 4 illustrates
the computation of the link around a nonmanifold ver-
tex.

4. Compute Lkω
0 v: The exact same process is applied

around v in order to compute Lkω
0 v.

5. Compute Lkω
0 e: Loop through the faces fi adjacent to

e in the extended complex. For each face fi , store the
vertex facing e in Lkω

0 e.
6. Compare Lkω

0 u ∩ Lkω
0 v and Lkω

0 e: The intersection
of Lkω

0 u and Lkω
0 v is computed. If this intersection

contains an edge, the edge collapse is rejected, as Lkω
0 e
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Fig. 4. Link of a nonmanifold vertex on the intersection of several
surfaces in the extended complex (left). Link of a vertex on the in-
tersection of several polylines. In the extended complex, dummy
triangles are added from the segment polylines modifying the link
of the vertex as shown (right). Yellow vertices are intersections of
orange polylines. Red vertices, blue edges, and the black dummy
vertex are simplices of the link of the orange vertex

contains only vertices. Compare the number of vertices
in Lkω

0 u ∩ Lkω
0 v with the number of vertices in Lkω

0 e.
The edge collapse is rejected if these numbers are not
equal. It is sufficient to compare the number of ver-
tices, and not the actual indices of the vertices, since
in any case the vertices in Lkω

0 e form a subset of the
vertices in Lkω

0 u ∩ Lkω
0 v.

7. Compute Lkω
1 u: Loop through edges ei adjacent to u

and in the first boundary of the extended complex. For
each edge ei store the vertex facing u in Lkω

1 u. Note
that if u is in the second boundary of the mesh, then
edge ωu is in Gω (more precisely in (ω ·Bd2 K)), and
thus the dummy vertex ω is in Lkω

1 u.
8. Compute Lkω

1 v: The exact same process is applied
around v computing the Lkω

1 v.
9. Compute Lkω

1 u ∩ Lkω
1 v: The intersection of Lkω

1 u
and Lkω

1 v is computed. If this intersection is not
empty, then edge e is rejected for collapse as the sec-
ond link condition breaks.

10.Accept collapse of e: If edge e has not been rejected in
previous steps, it can now be contracted. The dummy
cells introduced in the first step are removed.

5 Applications and results

We have applied our topology-preserving simplification
algorithm on a wide range of datasets. The error meas-
ure used in all examples to sort the edges in the heap
is a simple weighted combination taking into account
the maximal normal deviation of the faces and the poly-
line’s edges, before and after collapse. This simple error
measure already gives satisfactory results, but we stress
the fact that our algorithm can be combined with any
error measure. All simplifications run at about 20,000
removed edges per second on a 1.7-GHz Pentium M lap-
top. In the following section, all decimation percentages

are taken from the original number of triangles in the
mesh. The first paragraph shows a neuroscience applica-
tion involving a complicated surface geometry but with
a very simple feature line topology. Then a CAD/CAM
application is presented illustrating both a complicated
geometry and feature line topology. Finally, geologi-
cal data allow us to validate our method with a sim-
ple geometry but an extremely complex polyline top-
ology.

Geology data with nonmanifold models. As our edge-
collapse criteria for preserving topology is valid for 2-
complexes, nonmanifold models can directly be simplified
with the same topological test. Figure 5 shows the sim-
plification of geological data. Several layers separating
different soil types create a nonmanifold surface. Linear
features are present in the model that give specific in-
formation on a subset of the data and thus need to be
handled in the simplification process. Even with a high
simplification ratio of 95%, the topology of the nonman-
ifold surface is preserved as well as the linear features
embedded on the triangle edges. Note that several poly-
lines are crossing a nonmanifold region creating vertices
of order two that are successfully preserved through the
collapses.

Neuroscience. We have applied our simplification algo-
rithm on a triangle mesh extracted from MRI data and seg-
mented according to the sulci and the gyri (Fig. 6a,b,e,f).
Thus we were able to generate a low-resolution mesh
while preserving its main features: the mesh remains
a manifold surface, and the polylines remain closed curves
without self-intersections. The closeup view shows the ef-
fect of the simplification on a feature. Note that the bound-
aries are preserved despite the reduction of vertices along
them. As many features can be small and close to each
other, allowing the collapse of edges around and along the
boundaries is essential to keep the simplification rate low.

CAD/CAM model with complex polylines. Figures 6c,d,g,h
and 7 show the results on a CAD/CAM model of a pis-
ton after a simplification ratio up to 98%. The solid views
show the high simplification ratio applied to the triangles,
while the polyline views exhibit the preservation of both
the geometry and the topology of the polylines. In this
particular example polylines are extracted as interfaces in
between materials defined on the surface. Even with a high
simplification ratio of 98%, the interfaces are not altered,
as illustrated in the closeup views.

Terrain data. Figure 8 shows a subset of the surficial ma-
terials of Canada. Boundaries among soil types are rep-
resented by red polylines. By applying our algorithm we
successfully simplify the surface down to one fifth of the
original data without affecting the topology of the poly-
lines. The simplification process is stopped when no edges
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Fig. 5. Geological data showing several surfaces separating different soil types. Linear features are present in the data and on the layers.
This set of interfaces among soil types creates nonmanifold surfaces

Fig. 6. (a, b, e, f) Segmented surface of a human cortex. The sulci and gyri of the cortex (i.e., main features) are preserved by the sim-
plification. (c, d, g, h) CAD/CAM model of a piston simplified by preserving its material properties. Top row: solid faces of model with
material boundaries defined as polylines. We ensure that the topology of these polylines remains unchanged. Bottow row: the main features
of the model are preserved even after removing 95% of the vertices

can be removed without introducing a certain deviation
into the polylines. The simplification process stops early
because of the complexity of the polylignes and not be-
cause of changes in the surface topology. The closeup

view shows the simplification emphasizing the complexity
of the soil structure. Note that intersections among poly-
lines are represented by yellow spheres and that no such
features are removed through the simplification (i.e., it
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Fig. 7. CAD/CAM model of a piston simplified by preserving its
material properties

would introduce a topological modification of the poly-
lines).

6 Conclusion

This paper has introduced a new topology-preserving sim-
plification algorithm, based on edge collapse, for non-
manifold triangular meshes with embedded polylines. The
topology of the polylines as well as the mesh is pre-
served throughout the simplification using a unified and
robust validity algorithm to select edges that can be col-
lapsed. Our algorithm is based on powerful combinatorial
topology results and can be applied to general triangular
meshes, including nonmanifold meshes. The idea of the
extended complex, encoding implicitly the topologies of
the mesh and the polylines in a unified way, is at the heart
of our results. One of the most appealing feature of this
idea is its possible extension to 3-complexes. We are cur-
rently working on this in order to generalize this concept
to tetrahedral meshes with embedded 2D and 1D struc-
tures.

Appendix A

A n−simplex τ is the set of convex combinations of n +1
affinely independent points called the vertices of τ . A sim-
plex η whose vertices are a subset of the vertices of τ is
called a face of τ . This is denoted η ≤ τ or τ ≥ η. If η is
a face of τ , then τ is called a coface of η. A complex K is
a collection of simplices such that:

(i) If τ ∈ K , then all faces of τ are also in K .
(ii) If η, τ ∈ K , then η∩ τ is empty or a face of η and τ .

The star, the closure, and the link of a set of simplices
T in a complex K are denoted, respectively, by St (T ), T ,

Fig. 8. Subset of surficial materials of Canada. The percentages are
ratios of original data. Each soil type is color-coded. Interfaces
among them are shown by red polylines. Note the complexity of
the polyline topology emphasized by yellow spheres showing all
polyline intersections

Lk (T ) and defined by:

St(T) = {η ∈ K |η ≥ τ ∈ T } ,

T = {η ∈ K |η ≤ τ ∈ T } ,

Lk(T) = StT −StT .

If τ is a simplex and ω is a point affinely independent of
the vertices of v1, · · · , vn of τ , then the cone from ω to
τ is denoted by ω · τ and defined as a simplex with ver-
tices ω, v1, · · · , vn . If T is a set of simplices, then the cone
from ω to T is the union of the cones from ω to τ , with
τ ∈ T . It is denoted by ω · T .
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