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RESULTS

METHOD

PROBLEM  

Study the areas of influence of the most important vortices on 
2D turbulent hydrodynamic flows and 3D viscous flows.

Difficult to perform with traditional methods due to the 
complexity of the turbulent flows and the finer-grained mesh 
required. 

Solving the compressible unsteady Navier-Stokes equation 
flows [7] with a massively parallel structured solver using 
immersed boundary conditions in a simulation code [2], with 
the TENO 5th order scheme [4] and the AUSM+-up Riemann 
solver [6].

Running simulations at the exascale level means computing is 
getting cheaper while data transfer and storage is 
increasingly expensive. Topological Data Analysis (TDA) provides a set of techniques 

[9] which focus on structural features such as the turbulence in 
a flow.
 
The concept of persistent homology [3] introduces tools for 
the multi-scale representation of the structural features of 
interest.

In-situ visualization methods [12] allow to analyze simulation 
data as it is generated. This is a processing paradigm in 
response to recent challenges in the High Performance 
Computing (HPC) domain.

Adapt the simulation code to get ready for in-
situ processing by mapping simulation data 
structures (mesh, scalar and vector fields) to 
Conduit [11] data model.

Define a ParaView pipeline segmenting the main 
vortices using the Topology Toolkit (TTK) [10] to 
be specified in a Python script.

Execute the Python script at each timestep with 
the Catalyst library, through a specific interface 
implemented for the simulation code.

In-situ analysis of the simulation runs based on 
the energy spectrum [5] of each topologically 
segmented vortex. 

(a) Surface visualization of a Kelvin-Helmholtz instability. (b) iso-contour of the segmented enstrophy scalar field. (c) 

Persistence diagram and persistence curve used for the segmentation. (d) Energy spectrum for two different vortices in 

order to control the segmentation during run time. 

We show that the vortices describe a physical solution by 
looking at their energy spectrum. 

We easily identify the areas of influence of large vortices 
thanks to the topological tools of TTK such as persistence 
curves.

We verify the segmentation of the vortices on the enstrophy 
scalar field, with the energy spectrum of each vortex 
ensemble. 

We notice that the energy transfer of vortex ensembles 

evolves in 𝐾5/3 for 2D Kelvin-Helmholtz instability simulations 

and in 𝐾−3 for 3D Taylor Green Vortex simulations, as 

expected [8]. 

Our segmentation uses several Topological Data Analysis 

techniques [9] to face extensive computations of numerical 

approaches.

 

Critical points : variation in the topology of input scalar fields 

only change at special locations called critical points that are 

used to describe features of the flow.

Persistence : assesses the importance of a critical point based 

on the lifetime of the topological feature manipulated with 

persistence diagrams and persitence curves to filter noise and 

main vortices.

Morse-Smale Complex : partitions the domain according to the 

flow behavior of the gradient of the function.
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