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Abstract. Understanding physical phenomena implied in the design of a system
or in the guarantee of its performances require to run high fidelity simulation
codes and to create experimental campaigns at different scales. Thanks to the
use of advanced sensors or imaging capabilities in large facilities such as the
Laser Mega Joule and the use of High Performance Computing, very large and
complex dataset are generated. The analysis of such data is a real challenge
due to the size and the complexity of the data. When dealing with chaotic
phenomena, traditional analysis methods often try to average the answer. In
this paper, we introduce the use of Topological Data Analysis (TDA) to improve
the understanding of the results and avoid costly traditional analysis methods.
The key concepts of TDA are presented such as the notion of critical points,
persistence and different simplification representations. Then we illustrate the
advantages of TDA on successful use cases on the analysis of hydrodynamic
instabilities observed during Laser shooting or turbulences computed with a
computational fluid dynamic simulation code.

1 Analysis of large and complex data

To design, optimize or guarantee the performance of a system, large-scale simulations in var-
ious fields such as plasma physics, electromagnetism and aerodynamics are carried out at
CEA. The use of High Performance Computing approaches to run the simulation codes and
advanced sensors capabilities lead to the generation of very large and complex dataset that
scientists need to explore to understand the physical phenomena. Traditional analysis ap-
proaches based on scientific imaging (e.g. L, norm) or feature segmentation (e.g. watershed)
can be challenging to apply effectively to chaotic phenomena. The purpose of this work is
to introduce an alternative analysis approach in order to help the scientists understand their
complex and large data.

1.1 Topological representations

At the interface between Mathematics and Computer Science, Topological Data Analysis
(TDA) [1] forms a family of generic, robust and efficient techniques to analyze complex
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features in scientific data. TDA helps to identify hidden features in the structure of the data
and ease the comparison in ensembles [2]. More precisely, Persistent Homology [3] measures
topological features of shapes and of functions by tracking topological changes of a changing
space. This approach has been successfully used in various fields such as in medical imaging
[4], combustion [5] or astrophysics [6].

1.2 Related work in Topological Data Analysis

Concepts and algorithms from computational topology have been investigated, adapted and
extended by the visualization community for decades [7]. The classification of topological
methods can be expressed depending on the dimension of the input data such as a scalar,
vector or tensor and its evolution over time. A substantial corpus of literature [8] has been
dedicated to the visualization of flow data with topological methods. However, in many appli-
cations, the features of interest can be reliably represented by considering a single pointwise
scalar descriptor, such as pressure or intensity for instance. Such a transition to a scalar de-
scriptor enables users to leverage the ensemble of existing tools for scalar data analysis. For
example a single pixel information based on post-processing of radiographic images can be
sufficient to study instabilities during the ignition phase [9]. In computational fluid dynamic,
a relevant scalar descriptor can be sufficient to study the evolution of the vorticity structure
[10].

Many topological representations have been introduced for scalar data. For example the
persistence curve and the persistence diagram [1] can help represent the population of features
of interest in function of their salience. Different representations of segmentation can be
manipulated such as the merge trees [11] or the Morse-Smale complex [12], which depicts the
global behavior of integral lines. Robust and efficient algorithms have been introduced for the
computation of the Morse-Smale complex based on discrete Morse theory [13]. Comparison
of ensemble dataset is an important step of the analysis. This is why various metrics between
topological descriptors have been proposed [14]. Based on a bipartite assignment problem,
the Wasserstein distance [1] between ensembles has been extensively used. It enables users
to compare ensemble members directly based on their topological representation such as
persistence diagrams or merge trees.

2 Introduction to Topological Data Analysis

This section introduces the key concepts of Topological Data Analysis which are used to
build our visualization pipelines. Readers interested in TDA are encouraged to refer to the
formal introduction provided in [1]. These concepts are used at CEA through the design of
visualization pipelines starting from data preparation at the simulation code level or through
postprocessing tools after the data has been generated. Then the Paraview software [15] is
mainly used because it allows large data visualizations. Thanks to the Topology ToolKit (TTK)
[16] most of the topological representations needed in these studies are directly available and
integrated to Paraview.

2.1 Input data

In order to apply topological tools the input data is represented as an ensemble of N piecewise
linear scalar fields f; : M — R, withi € {1,..., N}, defined on a piecewise linear d-manifold
M, with d = 2 in this paper. A triangulation is given on the domain with a simplicial complex.
The scalar values are given at the vertices of M and are linearly interpolated on the simplices
of higher dimensions as shown on Figure 1 (b).
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Figure 1. 2D noisy scalar field image (a). Scalar value interpolation at the vertices (b) of the grid.
Terrain view of the image with critical points represented as spheres in blue for minima, white for
saddles and red for maxima (c), The persistence diagram captures the main three hills of the terrain
as prominent persistence pairs (large vertical segments), while small oscillations due to noise induce
features near the diagonal (d). The persistence curve shows the number of persistent pairs as a function
of their persistence. The green vertical line illustrates a persistence value which help to classifiy critical
points between noise and persistence features (e).

2.2 Critical point

Topological features in f; can be tracked with the notion of sub-level set noted f;_. (w) and
defined as the pre-image of (—co, w) by f;. The topology of this sub-level set can only change
at special locations. As w continuously increases, the topology of the f;~. (w) changes at
specific vertices of M, called the critical points of f; [17]. The classification of the critical
points can be done with a combinatorial approach by looking at the neighboring faces around
a vertex. The star of a vertex v € M, noted S#(v), is the set of its co-faces: St#(v) = {0 €
M| v < o}. It can be interpreted as the smallest combinatorial neighborhood around wv.
The link of v, noted Lk(v), is the set of the faces 7 of the simplices o of S#(v) with empty
intersection with v: Lk(v) = {tr € M|t < 0, 0 € St(v), T Nv = O}. The link of a vertex
can be interpreted as the boundary of its star. The lower link of v, noted Lk™(v), is given
by the set of simplices of Lk(v) which only contain vertices lower than v and the upper link
is defined symmetrically. A vertex v is regular if and only if both Lk™(v) and Lk*(v) are
simply connected. For such vertices, the sub-level sets do not change their topology as they
span St#(v). Otherwise, v is a critical point of f which can be classified as local minima
(Lk™(v) = 0), as local maxima (Lk*(v) = @) or saddles in all other cases as shown on Figure 1

(c).

2.3 Topological Persistence

Several importance measures for critical points have been studied such as the fopological
persistence [18]. Persistence assesses the importance of a critical point, based on the lifetime
of the topological feature it created or destroyed in f;~L (w), as the isovalue w continuously
increases. [1] indicates that if two connected components, created at the minima mg and m
with fi(mg) < f;(m;), meet at a given saddle s, the youngest of the two components (the one
created at m) dies in favor of the oldest one (created at m). In this case, a persistence pair
(my, s) is created and its topological persistence p is given by p(my, s) = fi(s) — fi(m;). All
the local minima can be paired following this strategy, while the global minimum is usually
paired, by convention, with the global maximum.



2.4 Persistence diagram

Persistence pairs are usually visualized with the persistence diagram [1], which embeds each
pair (¢, ¢’), with fi(c) < fi(¢’), as a point in the 2D plane, at location (f;(c), fi(c’)) as shown
on Figure 1(d). The value fi(c) is called the birth of the feature, while f;(¢’) is called its
death. The pair persistence can be visualized as the height of the point to the diagonal.
Features with a high persistence stand out, away from the diagonal, while noisy features are
typically located in its vicinity. The persistence diagram is widely used during the analysis
[18] because it summarizes the main features of interest and it is stable to perturbation such
as additive noise.

2.5 Persistence curve

An interesting representation of persistence features is the persistence curve, which plots
the number of persistent pairs as a function of their persistence as shown on Figure 1(e).
In practice, large plateaus in this curve will indicate stable persistence ranges, for which
no topological features are present in the data. The green vertical line on the Figure 1(e)
illustrates a classification into the population of topological features usually caraterized as
the noise for lower X values and persistence features for higher X values.

2.6 Wasserstein metric

To compare two datasets, persistence diagrams can be efficiently compared with the notion of
L,-Wasserstein distance [19]. The L,-Wasserstein distance is based on a bipartite assignment
optimization problem [20] between the points of the two diagrams to compare. It is defined as
the minimal value achieved by an optimal matching between the points of the two diagrams
and can be used for various comparisons [21]. .

2.7 Merge tree

The join tree is a graph-based representation which summaries the evolution of the connected
components of fi_\ (w) [11]. Each leaf represents the creation or the deletion of a compo-
nent while each interior vertex represents the joining or the splitting of components. An edge
represents a component in the level sets for all values between the edge values. Symmet-
rically the split tree describes the connected components of the super-level set fi;L (w). An
interesting representation for segmentation can be created called the merge tree by combining
the join tree (encoding the merges of components) with the split tree (encoding the splits of
components).

2.8 Morse-Smale complex

The Morse-Smale complex is a topological representation that provides an abstract descrip-
tion of the gradient flow behavior of a scalar field [22]. It subdivides a given scalar field into
regions of uniform gradient flow, segmenting the domain such that each point in the same
Morse-Smale manifold will flow towards the same critical point pair. Several implementa-
tions are available [13] for more detail. The key concepts are based on a Morse function
where all its critical points are non-degenerate and no two critical points have the same func-
tion value. An integral line in f is a path in M whose tangent vector agrees with the gradient
of f at each point along the path. Ascending and descending manifolds are obtained as clus-
ters of integral lines having common origin and destination respectively. The intersection
of transversal ascending and descending manifolds of f defines the Morse-Smale complex
segmentation.



3 Feature detection of Hydrodynamics Instabilities

Hydrodynamic instabilities [23] are a significant challenge in the development of Inertial
Confinement Fusion (ICF) capsules. These instabilities arise during the convergence and im-
plosion phases of the ICF process and have the potential to impede [24] the achievement of
higher energy gains. As a result, dedicated Discovery Science campaigns [25] have been
conducted at the world’s largest laser facility, the National Ignition Facility (NIF), in order to
gain a deeper understanding of the growth and possible control mechanisms of these detri-
mental instabilities. In particular, when starting from imprinted perturbations imposed by the
laser focal spots, the ablative Rayleigh-Taylor instability gives birth at its highly nonlinear
stage to complex three-dimensional patterns. In this work, we explore the radiographic im-
ages acquired during several experimental campaigns [9] on the NIF. Typical data analysis
methods based on threshold and watershed segmentation [26] have been used to detect the
peak-to-valley differences and the area of the bubbles. Such methods depend on parameters
defined by the observers and may be enhanced. The idea is to evaluate several topological
representations as introduced in Section 2 to provide novel segmentation techniques to help
the scientists to identify bubble structures in the experimental campaign images.

Figure 2. Radiographic images (a) from the N180213-001 dataset at 3 time steps shooted on the Na-
tional Ignition Facility. Terrain view (b) of the 23 ns iteration showing the most persistent critical points
corresponding to the the x-ray intensity maxima and minima. Topological segmentation (c) of the bub-
ble region based on the separatrices of an ascending Morse-Smale complex simplified according to a
persistence threshold. Distribution (c) of the number of features segmented by the Morse-Smale com-
plex over time, confirming the decreasing number of bubbles into the hydrodynamic instability.

3.1 Data Description of radiography

We explored several dataset such as the NI180212 or NI180213 from the NIF. First, image
processing on the raw data has been performed with different steps such as a backlighter re-
construction, a deconvolution and the calculation of a conversion factor from optical depth to
physical units. Then ready-to-use x-ray images are interpreted as a scalar field and projected
on a triangular mesh defining a manifold surface generated from the pixel structure. The size
of experimental images of this study is 900 x 500.

3.2 TDA for Rayleigh-Taylor instability segmentation

As describe in [27], we iterated on the x-ray images shown on Figure 2 (a) to better under-
stand the correlation between the pixel intensity and the bubble structure created during the
development of the Rayleigh-Taylor instability at the interface between the two fluids. Then
we use algorithms from the TDA to extract critical points as shown on Figure 2 (b) on the



x-ray intensity. The persistence as described in section 2.3 is computed and used to build a
persistence diagram. Then a persistence threshold (0.2 in this study) is applied to keep all
extrema pairs above and thus removed all pairs near the diagonal of the diagram. This treat-
ment preserves the main structures in the x-ray images and remove small variations around
bubbles. Then a Morse-Smale complex is computed as introduced in section 2.8 and shown
in Figure 2 (d). We segment the x-ray by the 1-separatrices of the ascending Morse-Smale
complex which leads to a very promising segmentation. To validate this segmentation, we
compare the number of features segmented at each iteration 2 (¢) and compare them with
studies such as [28]. The Morse-Smale segmentation successfully capture the expected de-
creasing number of bubbles of the instability over time as shown on the histogram.

4 Vortex Segmentation in turbulent flows

Flow turbulence is an important phenomenon in fluid dynamics that engineers need to un-
derstand. The vortices produced by turbulent flow are difficult to analyze accurately due to
their chaotic nature. Therefore, we decided to use topological analysis to segment vortices
and their amplitude area to study turbulent flow.

4.1 Data Description from the simulation code

In order to segment vortices produced by turbulent flow, we used a compressible viscous
testcase with a flow past two cylinders at Mach 0.425 and Reynolds number at 100000, at
a final computational time ¢t = 80. The data generated for the present study comes from a
direct solver of the Navier-Stokes equations. The equations are solved using a conservative
finite volume algorithm on a Cartesian grid [29] and complex geometry is handled using a
ghost-cell based immersed boundary method [30]. To accurately compute turbulent flow,
the approximate AUSM+up [31] solver has been used for the numerical fluxes, with the left
and right states being interpolated using a 5"-order Weighted Essentially Non-Oscillatory Z
(WENO-Z) scheme [32] and the Runge-Kutta third order scheme to compute time integration
[33]. Reduce the number of parameters to a scalar field is crucial to be able to benefit from
the TDA representation described in section 2. Thus we worked with a common measure to
analyze turbulent flow which is the vorticity magnitude.
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Figure 3. Vortices segmentation based on the direction rotation (a) computing on a grid 2000x400. Per-
sistence diagram and persistence curve (b) for vorticity magnitude scalar field depending of a threshold
represented as a vertical black line.



4.2 TDA for feature segmentation

To ease the segmentation of vortices various topological representations can be built on the
vorticity magnitude scalar field. We first compute the persistence diagram and the persis-
tence curve. To estimate an appropriate persistence threshold, we considered the persistence
diagram which represents each minimum, denoting a vortex, as a vertical bar, whose height
denotes the density amplitude of the vortex. Bars near the diagonal, corresponding to noisy
structures, can easily be isolated (persistence below 4, represented in Figure 3) and the data
can be simplified to account for this noise removal. Then a join tree is used for the vortex
segmentation in order to identify the area of influence of such feature. The direction of rota-
tion is then emphasized by changing the color of the segmentation based on the sign of the
vorticity of the vortex (blue clockwise and red counter clockwise). With this representation
we successfully segment and better understand the main features of the turbulent flow.

5 Comparison of ensembles for simulation code development

A multitude of numerical ingredients can be employed to simulate a given flow configuration,
each of which is itself subject to a multitude of input parameters. These include domain
resolution, methods of reconstruction, and solvers, among others. This leads to the generation
of very large ensembles of data that post-processing techniques need to explore. In particular,
domain experts are interested not only in identifying solver configurations that produce the
most realistic simulations, but also in discovering configurations that result in degraded but
fast computations, which still produce simulations of acceptable realism. It is evident that
the correct selection of variables can result in a notable enhancement in the accuracy and
efficiency of the experts’ work, particularly in the context of turbulence, which is inherently
a chaotic phenomenon. The objective of this study detailed in [34] is to demonstrate the
potential of TDA to facilitate the identification of optimal numerical components that would
otherwise be inaccessible through traditional fluid dynamics post-processing.

Figure 4. The 180 members of the ensemble (a) obtained with variations of timesteps, interpolation
schemes, orders, resolutions and Riemann solvers. Top view (b) of one member with an elevation view
showing extrema in the scalar field and critical points.
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Figure 5. Terrain views of the TENO (a) and WENO-Z (c) scheme reconstruction for 5 different solvers.
The average curves (b) represent the average persistence curve of all other solver configurations for the
TENO in red and the WENO-Z in blue.

5.1 Data description of the ensemble

The simulation code considered is a two-dimensional compressible unsteady Euler equations
for inviscid flows [29] with high-order low-dissipation reconstruction schemes of 5th- and
7th-order and a variety of Riemann solvers to evaluate the numerical fluxes between the cells.
The development of such simulation code requires to evaluate lots of different combinations
where the domain resolution, the simulation time, the interpolation scheme, the order of inter-
polation and the Riemann solvers can vary. To demonstrate the use of TDA on such data we
consider a 2D turbulent instability generated with 5 parameters : Resolution: 256,512, 1024;
Order: 5,7; Time: fy,1,f,; Solver [29]: HLL, SLAU2, AUSM+up, ROE, HLLC; Scheme:
TENO [35], WENO-Z [32] leading to an ensemble of 180 members as shown on Figure 4
(a).

5.2 Scheme comparison with persistence curves

To demonstrate the correctness of TDA on such turbulent dataset, we state a known hypothe-
sis based on the literature such that the TENO [35] scheme reconstruction presents more tur-
bulence than the WENO-Z [32] no matter the other parameters are (resolution, time, solver).
We therefore try to find a topological representations based on the critical points of the en-
strophy scalar field which highlight this difference. The enstrophy is defined as the square of
the flow vorticity : & = 0.5|V x u|* with u the velocity vector. To better characterize all the
vortices influencing the turbulence, we use persistence curves. These curves will allow us to
threshold the vortices at different scales and use the integral of the persistence curves to take
into account all the feature. The difference between two integral curves corresponds to our
metric allowing to precisely describe the similarity in the topology of the critical points of the
enstrophy. Bigger is the integral, the more different the topology of the instability is. Thus,
to verify our hypothesis related to the differences between TENO and WENO-Z schemes,
we want the difference of the integrals always different no matter the configurations of the
solvers. Figure 5 shows the result of the study where the value of the difference between
integrals is always different from 0. This same protocol has been used to different hypoth-
esis such as the independence of order for certain solvers [34]. In this situation, with the
exact same analysis workflow we confirmed the integral difference to be always close to 0
illustrating the relevance of the TDA approach for this numerical and physical description.

6 Conclusion

This work introduces several use cases of Topological Data Analysis to better understand
the complex phenomena of instabilities and turbulences studied at CEA. This experience ac-
quired on such chaotic data is useful for other applications and further work needs to be done



with even more meaningful topological representations. For example, the features of interest
(bubbles in the x-ray images of hydrodynamic instablities or vortices in the turbulent flow)
could be tracked over time with algorithms based on the distances between segmentations.
Other promising topological distances [36] or clustering methods could also be evaluated
depending on the physical phenomena to study.
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