
Technical report on open-source VR prototype
in a Linux restricted network environment

Adrien Gomez*

CEA, France
Fabien Vivodtzev†

CEA, France

ABSTRACT

In this ongoing VR project leads at The French Atomic Energy Com-
mission (CEA) , we are successfully extending Virtual Reality (VR)
experiences for the analysis of Computer-Aided Design (CAD) and
simulation data as close as possible to the scientist’s workstation.
Due to security requirements, the deployment of such a VR environ-
ment on a limited network can be cumbersome. Therefore, in this
project we explore open source solutions that can be packaged to
enable VR exploration of scientific data in a Head Mounted (HMD)
from a restricted network without an a priori VR ready environment.

Keywords: VR environment, CAD, open-source, Unity, Monado,
Godot

1 CONTEXT

Virtual Reality (VR) technologies can be used in various fields. In
this work we are interested in creating a VR environment for data
exploration in the field of CAD and numerical simulation. There
are many frameworks like Unity [1], Ansys EnSight [2], or Unreal
Engine [3]. Most of these solutions work well with different HMDs
connected to middleware and drivers, mostly in a Windows oper-
ating system environment. The goal of this project is to develop
a VR workflow that runs on a restricted network isolated from the
Internet and running mainly on Linux. The CAD to explore and
the simulation results to analyze are generated on supercomputers
connected to the same restricted network. In order to offer the users,
VR capabilities on their data, we are investigating solutions to set
up an environment on Linux that minimizes the transfer between
networks. We are also interested in open source solutions to meet the
security requirements of such a restricted network. In this project,
we are using a workstation with an nvidia GeForce GTX 1080 to
which an HTC Vive Pro [4] is connected. Our first demonstrations
with this HMD under Windows using the SteamVR software [5].
With this configuration, we successfully set up several proofs of
concept, which will be discussed later. Based on these use cases,
we will discuss the roadmap for deploying such VR environments
in a Linux isolated network environment with various open source
software such as Monado [6] and the Godot [7] engine.

2 USE CASES

2.1 CAD exploration
Our first use case corresponds to a CAD visualization of an assembly
line. The 3D model contains 7000 objects and 800 000 polygons.
The goal was to create a VR environment directly from the CAD file
exported from the engineering office via the CATIA [8] software,
without spending too much time processing it or creating a hierarchy
within the VR software. Many software can be used to explore this
type of CAD model, such as TechViz XL [9], 3DX [10], CAD-to-
VR [11].

*e-mail: adrien.gomez@cea.fr
†e-mail: fabien.vivodtzev@cea.fr

For this use case, we used Unity [1] and various assets to load
and manipulate the 3D model. First the plugin PiXYZ [12] plugin
allows us to load the hierarchy of the CAD file and and create a
Unity object with the right meshes and colliders to prepare the VR
manipulation. Then we use the Unity plugin Interact [13] to create
the scene with interactions and some default material properties for
the objects.

2.2 Identifying Mesh Failures
Our second use case is to visualize a mesh and try to provide a tool
to explore singularities or errors introduced into the mesh during
the generation. In this project we decided to implement a specific
interaction and render adapted to meshes. Thus, we implemented
a mesh reader in Unity in C# and added VR functionalities using
the VRTK [14] Unity asset. The implementation allows us to define
material properties, rigid bodies for physics, highlighting of objects
and volume definition for the colliders.

In this work, we focus on the design of simple 3D interactions
for non-expert users in VR to allow them to easily get familiar with
the visualization of a mesh in the HMD. To facilitate the navigation,
the workstation shows the user’s view and some controls to change
the size and the view in case the user gets lost. We also add a
simple collaboration tool between the user and the controller to
allow the user to point with a laser-style ray some artifacts into the
mesh. Non-expert VR users have had a very positive experience with
this immersive mesh exploration. They felt comfortable in the VR
scene and appreciated the high visual impact of this visualization,
especially around mesh inconsistencies.

2.3 Visualization of Simulation Data
Our third use case is the exploration of simulated data with a scien-
tific visualization pipeline to extract isosurfaces or perform volume
rendering. To take advantage of existing solutions, we have used the
the VR plugin of ParaView [19] named OpenVR (recently renamed
to XRInterface in ParaView 5.11). The data is loaded from ParaView
GUI on the workstation and the visualization pipeline is set up. The
rendering view is then sent to the HMD display with several interac-
tions adapted to scientific visualization, such as translation, rotation
and scaling but also cropping and picking.

3 VR OPEN-SOURCE SETUP

The experiences described above show that VR could help scientists
to understand different types of data. Even new VR users can benefit
from this technology with visualizations adapted to the application
domain (CAD, meshing, simulation). The various experiments also
show that VR workstations should be as close as possible to the
working environment in order to be easily used by the expert. A
dedicated room for VR far from the user’s workstation or an ad-
ditional transfer between networks should be avoided as much as
possible. Therefore, in this project, we are trying to reproduce such
VR experiences, but on the network of the supercomputer where the
data are explored.

This restricted network is under Linux, with high software secu-
rity requirements, and without internet access. The use of SteamVR
and Unity cannot be deployed for every user due to the security re-
quirements. That’s why we are investigating the use of open source

1



software running on Linux to control the HMD. We also define a
pipeline to prepare the data models for the VR scene tools.

3.1 Software and Data Preparation for VR
First, a CAD file is exported from CATIA and converted with the
open source FreeCAD [15] software to a glTF [16] file. The hi-
erarchy of the complex CAD model is preserved and ready to be
imported into VR software.

3.2 Packaging VR software
In order to simplify the deployment of all required VR software on
the restricted network, we prepare a container using the Flatpack
[17] tool. From an open network, we first configure the proxy to
download the required packages. Then the home directory and
download repository are set up. After the configuration is done into
this container and an archive is created for transfer and deployment
on the restricted network. The use of such installed software is made
by the run command through the flatpack tool.

3.3 Build VR scene
As mentioned earlier, there is a lot of software available to build
a 3D scene ready for VR. In this project, we focus on lightweight
open source solutions. Therefore, we will use the Godot 4 engine,
which is a free open source software to build desktop and mobile
applications in 2D and 3D. We package the engine as described in
the previous section by adding the adding the VR capabilities. This
is done using the Godot XR tool [18] plugin and special shaders to
enable the stereoscopic views in the engine, as explained at the end
of this section.

The first step is to configure the 3D by creating a Node3D named
Main, an XROrigin3D node as child of Main, an XRCamera3D node
as child of XROrigin3D, and two XRController3D nodes as children
of XROrigin3D for the left and right hand. In the Inspector panel,
configure the Tracker parameter for the left and right hand. Then
add a mesh as a child of the left and right hand to visualize them and
different 3D objects like a plane mesh for the ground. Add some
light and a world environment with a sky and a PhysicalSkyMaterial.
Finally, add a script to ensure that the OpenXR interface is loaded
successfully with the function XRServer.find interface(”OpenXR” ).

To activate the OpenXR tools for the scene, create a new folder in
the project folder, create a new folder named addons and extract the
godot-xr-tools folder into it (or download it if you have an internet
connection from the AssetLib tab). Then add a VRCommonShader-
Cache node to the XRCamera3D. This will tell Godot to use certain
shaders from the XR Tools library. With all the previous steps we
successfully created a simple VR scene including the CAD model
with appropriate material properties, object hierarchy and simple
interaction tools.

3.4 Easy XR Driver Deployment
In order for the HMD to work with the VR workstation drivers, a
middleware needs to be configured. Our first experiment was made
on the open network, with a support of the HTC Vive Pro in Godot
using SteamVR. Since we want to simplify software installation
on the secure side we are now investigating how to use an open
source alternative like Monado [6]. This open source XR runtime
brings immersive XR experiences to workstations, mobile phones,
and other devices. Monado aims to be a complete implementation
of the OpenXR API created by Khronos and runs on Linux.

4 CONCLUSION AND FUTURE WORK

Based on several VR experiments with different software and data,
we successfully identify real-world applications of VR for CAD
and scientific data exploration used by scientists in the laboratory.
The experience shows that to enhance VR capabilities, users need
to have a running VR environment as close as possible to their data.

Therefore, in this project, we show how to set up a lightweight
and portable VR environment on a restricted network. This ongoing
work needs to continue on the driver side by replacing SteamVR with
Monado to finally have a VR-ready open-source environment that
can be easily deployed on a restricted network with an automated
pipeline to explore complex CAD models in VR.

REFERENCES

[1] Unity, Unity Technologies, https://unity.com/.
[2] Ansys EnSight, Ansys, https://www.ansys.com/products/
fluids/ansys-ensight.

[3] Unreal Engine, Epic Games, https://www.unrealengine.com/.
[4] HTC Vive Pro, HTC, https://www.vive.com/eu/product/
vive-pro/.

[5] Steam VR, Valve, https://store.steampowered.com/app/
250820/SteamVR/.

[6] Monado, https://monado.dev/.
[7] Godot, https://godotengine.org/.
[8] Catia, Dassault Systèmes https://www.3ds.com/fr/

produits-et-services/catia/.
[9] Techviz XL, Techviz https://www.techviz.net/en/.

[10] 3DX, Dassault Systèmes https://www.3ds.com/3dexperience.
[11] CAD-to-VR, Autodesk, Dassault Systèmes https://www.autodesk.

com/developer-network/certified-apps/cad-to-vr.
[12] Pixyz, xxxx https://www.pixyz-software.com/.
[13] Interact, LS Group xxxx https://www.ls-group.fr/fr/

interact.
[14] VRTK, https://www.vrtk.io/.
[15] FreeCAD, https://www.freecad.org/.
[16] glTF, https://www.khronos.org/gltf/.
[17] Flatpak, https://flatpak.org/.
[18] Godot XR tools, https://github.com/GodotVR/

godot-xr-tools/releases.
[19] J. Ahrens, B. Geveci, and C. Law. ParaView: An end-user tool for

large data visualization. In Visualization Handbook. Elesvier, 2005.
ISBN 978-0123875822.

2

https://unity.com/
https://www.ansys.com/products/fluids/ansys-ensight
https://www.ansys.com/products/fluids/ansys-ensight
https://www.unrealengine.com/
https://www.vive.com/eu/product/vive-pro/
https://www.vive.com/eu/product/vive-pro/
https://store.steampowered.com/app/250820/SteamVR/
https://store.steampowered.com/app/250820/SteamVR/
https://monado.dev/
https://godotengine.org/
https://www.3ds.com/fr/produits-et-services/catia/
https://www.3ds.com/fr/produits-et-services/catia/
https://www.techviz.net/en/
https://www.3ds.com/3dexperience
https://www.autodesk.com/developer-network/certified-apps/cad-to-vr
https://www.autodesk.com/developer-network/certified-apps/cad-to-vr
https://www.pixyz-software.com/
https://www.ls-group.fr/fr/interact
https://www.ls-group.fr/fr/interact
https://www.vrtk.io/
https://www.freecad.org/
https://www.khronos.org/gltf/
https://flatpak.org/
https://github.com/GodotVR/godot-xr-tools/releases
https://github.com/GodotVR/godot-xr-tools/releases

	Context
	Use cases
	CAD exploration
	Identifying Mesh Failures
	Visualization of Simulation Data

	VR open-source setup
	Software and Data Preparation for VR
	Packaging VR software
	Build VR scene
	Easy XR Driver Deployment

	Conclusion and future work

