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Figure 1: Topological Data Analysis protocols applied on an ensemble dataset of a Kelvin-Helmholtz instability. (a) The 180 members
of the ensemble obtained with variations of timesteps, interpolation schemes, orders, resolutions and Riemann solvers (Tab. 1). (b)
The top cluster represents the time separation of t0 and t1 for the flows S1 and S2 with the Wasserstein distance and the bottom
cluster with the L2-norm. Red lines show the timestep separation with our clustering method whereas the sphere colors are the
ground truth, illustrating the limitation of the L2-norm. (c) Persistence curve protocol : Differences between integrals of persistence
curves (gray area) of the enstrophy computed with a SLAU2 solver, an order 7 TENO scheme and a resolution of 1024×1024 for
various configurations (S1 at t0, S2 and S3 at t1). These integral differences exhibit the appearance of vortices (critical points) as the
time increases. (d) Outlier distance protocol : Wasserstein distance matrix for 5 configurations S1(t0,HLLC), S2(t1,Roe), S3(t1,HLLC),
S4(t2,Roe), S5(t2,HLLC) computed with an order 7 WENO-Z interpolation scheme at 512×512. The sum of each row the configuration
maximizing this distance between solvers and timesteps, here S1. (e) Unsupervised classification: Wasserstein distance matrix for
the previous configurations with an order 7 WENO-Z interpolation scheme at 256×256. The clustering based on the Wasserstein
distance and colored according to the Kmeans clustering method successfully segments the time steps.

ABSTRACT

This application paper presents a comprehensive experimental eval-
uation of the suitability of Topological Data Analysis (TDA) for
the quantitative comparison of turbulent flows. Specifically, our
study documents the usage of the persistence diagram of the max-
ima of flow enstrophy (an established vorticity indicator), for the
topological representation of 180 ensemble members, generated by
a coarse sampling of the parameter space of five numerical solvers.
We document five main hypotheses reported by domain experts,
describing their expectations regarding the variability of the flows
generated by the distinct solver configurations. We contribute three
evaluation protocols to assess the validation of the above hypothe-
ses by two comparison measures: (i) a standard distance used in
scientific imaging (the L2 norm) and (ii) an established topological
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distance between persistence diagrams (the L2-Wasserstein metric).
Extensive experiments on the input ensemble demonstrate the supe-
riority of the topological distance (ii) to report as close to each other
flows which are expected to be similar by domain experts, due to the
configuration of their vortices. Overall, the insights reported by our
study bring an experimental evidence of the suitability of TDA for
representing and comparing turbulent flows, thereby providing to the
fluid dynamics community confidence for its usage in future work.
Also, our flow data and evaluation protocols provide to the TDA
community an application-approved benchmark for the evaluation
and design of further topological distances.

1 INTRODUCTION

Flow turbulence is a phenomenon of major importance in fluid
dynamics. It is characterized by chaotic changes in the motion of
a flow (e.g. typical cigarette smoke patterns), which have a drastic
impact in numerous applications (aeronautics, weather forecast,
climate modeling, material sciences, astronomy, etc.). Although
turbulence has been studied since the early stages of modern physics,
its theoretical mastery remains incomplete [4] and the understanding
of the Navier-Stokes equations, central in the description of fluid
motion, is still considered as a major open challenge in mathematics



and physics, as proven by the Clay Mathematics Institute selecting
it to be among its celebrated Millennium Prize problems [34]. Thus,
in engineering applications, the main practical solution available for
the study of turbulence remains numerical simulation.
Problem introduction: However, many different numerical solvers
can be used to simulate a given flow configuration, each solver being
itself subject to several input parameters (such as domain resolution,
interpolation scheme and order, etc.): when faced with such a wide
variety, the main problem for users becomes the configuration itself
of the simulation parameters. In particular, domain experts want not
only to identify the solver configurations which produce the most
realistic simulations, but they also want to discover configurations
resulting in degraded but fast computations, which still produce
simulations of acceptable realism. The fundamental problem behind
such comparative analyses is that of comparing quantitatively tur-
bulent flows. For instance, the quantitative realism of a simulation
could be evaluated by comparing its outcome to a reference, either
obtained by acquisition or by a highly detailed simulation considered
as a ground-truth. However, the chaotic nature of turbulent flows
makes their direct comparison with standard imaging tools imprac-
tical. For instance, turbulent flows which are considered similar at
a high level by domain experts (in terms of the number and size
of their vortices) are reported by classical metrics such as the L2
norm as being very distant (Fig. 1), as such pointwise measures are
sensitive to mild geometrical variations in the data and miss global
structural similarities in such a chaotic context. This observation
motivates the consideration of alternative similarity estimation tools,
which focus on the structure of the flow, rather than its raw geometry.

In that regard, Topological Data Analysis (TDA) [26] forms a
family of generic, robust and efficient techniques, whose purpose is
precisely to recover hidden implicit structural patterns in complex
data, and to enable their reliable representation and comparison.
As such, they provide potentially relevant alternatives to standard
comparison measures used in scientific imaging, such as the L2 norm.
Moreover, the utility of TDA has been already demonstrated in a
number of analysis and visualization tasks [51], with examples of
successful applications in combustion [16, 43, 68], material sciences
[33, 45, 46], bioimaging [2, 12, 21], quantum chemistry [9, 39, 82],
or astrophysics [101, 102]. In particular, the critical points of flow
vorticity indicators have been reported to appropriately capture the
center of vortices [18,60], as well as their importance, with the notion
of topological persistence [30]. Such results provide additional
evidence and consolidate the intuition that TDA could be a relevant
framework for comparing turbulent flows.

The ambition of this application paper is to provide a comprehen-
sive experimental evaluation of the above intuition, i.e. to assess the
suitability of topological data representations and their associated
analysis tools for the quantitative comparisons of turbulent flows.
We shall focus on a specific type of turbulence that expresses itself
in two dimensions (Kelvin-Helmholtz instability): it is a fair rep-
resentative of generic turbulence (a.k.a. three-dimensional viscous
turbulence) and allows for affordable high-resolution simulations
to feed our study. Specifically, our study documents the usage of
the persistence diagram of the maxima of flow enstrophy (an es-
tablished indicator of vorticity for two-dimensional flows, Sec. 2)
for the topological representation of 180 members of an ensemble
of hydrodynamic turbulent flows, generated by a coarse sampling
of the parameter space of five distinct solvers. We document five
main hypotheses (Sec. 3) reported by domain experts, describing
their expectations with regard to the variability among the flows
generated by the distinct solver configurations. Then, we describe
three evaluation protocols (Sec. 4) designed to assess the validation
of the above hypotheses by standard comparison measures (L2 norm)
on one hand, and by topological methods on the other. Specifically,
these protocols exploit the persistence curve, the L2-Wasserstein
distance between persistence diagrams [111] and k-means in the

Figure 2: Baseline analysis by angle-averaged kinetic energy power
spectrum for all solvers (WENO-Z, order 7, t2, 512×512).

L2-Wasserstein metric space [112]. Finally, we document the re-
sults of these protocols on the input ensemble (Sec. 5). We believe
that the insights reported by our study bring a strong experimental
evidence of the suitability of TDA for representing and compar-
ing turbulent flows, thereby providing confidence in its usage by
the fluid dynamics community in the future. Moreover, our flow
data and evaluation protocols provide to the TDA community an
application-approved benchmark for the evaluation and design of
further topological distances in the future.

1.1 Related work

This section presents the literature related to our work. First, we
discuss previous work dealing with (i) simulations of turbulent flow
and their quantitative evaluation. Next, (ii) we review previous work
dealing with topological methods for the analysis of ensemble data.
(i) Turbulent flow simulation. Turbulence is ubiquitous in nature,
at all scales, from Higgs-Boson condensates [65] to a stirred cup
of coffee to geophysical flows [66] to galaxy formation. While
a significant literature in graphics [5, 62, 116] focused on the effi-
cient generation of visually plausible turbulence, we focus in this
work on the direct numerical simulation of the underlying physical
equations, for engineering applications. A special distinction of 2D
turbulence is that it is never realized in nature that, unless strongly
constrained, always has some degree of three-dimensionality but
rather it only exists in computer simulations. Two-dimensional tur-
bulence has thus been studied extensively by the latter means e.g.
for its importance as an idealization of meteorological flows [13],
its role in the confinement of thermonuclear plasmas [66] but also
as a cost-effective numerical testing ground for three-dimensional
flows dynamical theories [104]. Most such studies focus either on
validating predictions of theorists [65, 71] or on providing insights
into the dynamic behavior of 2D eddies thanks to high-resolution
simulations [71, 77]. The simulations are usually analyzed by con-
sidering macroscopic quantities such as the enstrophy (see below
equation (3)), or by considering the Fourier decomposition of the
2D field (similar to Fig. 2)- integral indicators that make it near im-
possible to compare and/or classify the results of, say, a parametric
study. Some efforts have been made recently [95] to provide the
users with some guidelines to best choose the numerical methods
and parameters for the simulation of 2D turbulence, but still using,
mostly, the aforementioned integral, inaccurate, indicators. The
present study aims at providing the workers in 2D turbulence with
another tool to classify their results and best choose their settings,
this time using mostly local indicators able to exploit the whole flow.
(ii) Topological methods for ensemble analysis. Concepts and
algorithms from computational topology [26] have been investi-
gated, adapted and extended by the visualization community for
more than twenty years [51]. Specifically, a large body of litera-
ture has been dedicated to the analysis and visualization of flow
data with topological methods and we refer the readers to a series



of surveys on the topic [19, 38, 69, 89, 96, 113], including a recent
iteration [47]. A substantial line of work [83, 84, 88] focused on
extending topological techniques to uncertain vector fields, where
flow variability is encoded via a pointwise estimator (e.g. an his-
togram) of an a priori vector distribution, but only few techniques
explicitly focused on the analysis of flow variability in an ensemble.
Specifically, several comparative visualization techniques have been
proposed [42,49,55,57,75,97,98,117]. Ferstl et al. [35] investigated
the global structure of flow ensembles, by proposing a clustering ap-
proach of the members, based on a measure of streamline similarity.
However, these techniques assume a mild geometrical variability
within the ensemble and are therefore not suited to highly turbulent
flows as studied in this work, where the geometry of the features
(streamlines, vortices) chaotically changes from one ensemble mem-
ber to the other (Fig. 1), even upon only slight variations of the
simulation input parameters. In certain application contexts, CFD
experts often prefer to focus their analysis on (simpler to interpret)
scalar descriptors generated from the flow, such as the kinetic en-
ergy (Fig. 2) or the enstrophy (Eq. 3). Such a transition to a scalar
descriptor enables them to leverage the existing tools for scalar data
analysis. For instance, several authors [18, 60] have shown that,
given a relevant vorticity scalar descriptor, the center of the flow
vortices could be reliably extracted and tracked over time, which sup-
ports the idea that topological methods for scalar data can be useful
for the description of specific flow features. Thus, in the following,
we describe the literature related to topological methods for scalar
data. Popular topological representations include the persistence dia-
gram [26, 30] which represents the population of features of interest
in function of their salience, and which can be computed via matrix
reduction [7, 26]. The Reeb graph [10], which describes the connec-
tivity evolution of level sets, has also been widely studied and several
efficient algorithms have been documented [25, 85, 86, 107], includ-
ing parallel algorithms [41]. Efficient algorithms have also been
documented for its variants, the merge and contour trees [20, 105]
and parallel algorithms have also been described [1, 22, 40, 76]. The
Morse-Smale complex [15, 27, 28], which depicts the global behav-
ior of integral lines, is another popular topological data abstraction
in visualization [24]. Robust and efficient algorithms have been
introduced for its computation [44,93,100] based on Discrete Morse
Theory [36]. Inspired by the literature in optimal transport [59, 79],
the Wasserstein distance between persistence diagrams [26] (and its
variant the Bottleneck distance [30]) have been extensively studied.
In practice, it enables users to compare ensemble members based on
their persistence diagrams. In our experimental study, we focus on
this first, established topological tool for comparing the topology of
ensemble members and we refer the reader to a recent survey [114]
for a description of alternative metrics between topological descrip-
tors. Several techniques have been proposed for summarizing the
topological features in an ensemble or analyzing their variability.
Favelier et al. [32] and Athawale et al. [3] introduced approaches for
analyzing the variability of critical points and gradient separatrices
respectively. Recent approaches aimed at summarizing an ensem-
ble of topological descriptors by computing a notion of average
descriptor, given a specific metric. This notion has been well studied
for persistence diagrams [67, 111, 112], with direct applications to
ensemble clustering [112], and analogies have been developed for
merge trees [90, 115].

1.2 Contributions
This application paper makes the following new contributions:

1. An evaluation procedure for distances between turbulent flows:
We document 5 main hypotheses reported by domain experts,
describing their expectations about flow variability within the
studied ensemble (180 members). We contribute 3 evaluation
protocols, to assess the validation of the hypotheses by a spe-
cific metric, given as a distance matrix between the members;

2. A comprehensive experimental study: We provide a detailed
experimental study of the ensemble under consideration for
two distance metrics: (i) a standard distance used in scien-
tific imaging (the L2 norm) and (ii) an established topological
distance between persistence diagrams (the L2-Wasserstein
metric). Our experiments demonstrate the superiority of the
topological distance to report as close solver configurations
which are expected to be similar by domain experts. The in-
sights reported by our study bring an experimental evidence
of the suitability of the persistence diagram for representing
and comparing turbulent flows, thereby providing to the fluid
dynamics community confidence for its usage in future work;

3. An application-approved benchmark: We provide as supple-
mental material (i) the input ensemble of 180 turbulent flows
(see [81] for a direct link) and (ii) a python template script
for reproducing our results. Our script supports the usage of
custom distance matrices, thereby providing to the TDA com-
munity an application-approved template for the evaluation
and design of further topological distances.

2 BACKGROUND

This section presents the background used in this study in (i) nu-
merical simulation by presenting the equations, the interpolation
schemes and the solvers implemented in our simulation code. Then
the background in (ii) topological data analysis introduces the main
notions used such as critical points, persistence diagrams or the
Wasserstein distant metric.

2.1 Numerical simulation
In this work, we consider the two-dimensional compressible un-
steady Euler equations for inviscid flows [78]:

Ut +Fx +Gy = 0, (1)

where the subscripts indicate differentiation, U is the vector of con-
servative dimensionless variables and F and G represent the inviscid
fluxes in x and y direction respectively. Those vectors are defined as:

U =

 ρ

ρu
ρv
ρE

 , F =

 ρu
ρu2 + p

ρuv
(ρE + p)u

 , G =

 ρv
ρuv

ρv2 + p
(ρE + p)v

 .

(2)
In the above expressions, t denotes the time and x and y are the
Cartesian coordinates. ρ denotes density, u and v denote the x− and
y− coordinates of the velocity vector w, E denotes the specific total
energy and p denotes the static pressure. The aforementioned mathe-
matical model is described as it is implemented in the in-house code
HYPERION (HYPERsonic vehicle design with Immersed bOuNd-
aries) whose primary capabilities as a massively parallel structured
solver using immersed boundary conditions have already been dis-
cussed by Bridel-Bertomeu [17]. The present study uses only regular
Cartesian grids with constant grid spacings (grid of pixels) in both
directions of space, ∆x and ∆y, and will not rely on any immersed
boundary condition during the computations presented later. This
being said, the finite-volume method [70,108,110] is then employed
for space discretization of the compressible Euler equations (1).

The 2D turbulence investigated in our work is generated using a
Kelvin-Helmholtz instability (see [95] for a complete description)
simulated with high-order low-dissipation reconstruction schemes
of 5th- and 7th-order (Tab. 1). The numerical fluxes between the
cells are obtained using a variety of Riemann solvers detail at the
end of this section. To emulate turbulence in a infinite medium,
all boundary conditions are set as periodic. One common measure
of turbulence in two dimensions that we will rely on is the local
enstrophy E , defined locally as the square of the flow vorticity:

E = 0.5 |∇×w|2 . (3)



When solving numerically the Euler equations (Eq. 1), we start
by interpolating the values of the flows at the cell interfaces. Then,
we have to use an approximate Riemann solver [108] to solve the
eponymous problem on those interfaces. In the remainder, we will
expose the different methods used to make these two calculations.
Interpolation schemes. One problem in numerically solving the
schemes is to be able to capture the strong discontinuities while
capturing the small scales of the turbulence. In addition, we want to
be as accurate as possible in our interpolation. To do this, researchers
and engineers have developed several high-order reconstruction
methods. A common scheme for solving compressible flows in the
presence of strong discontinuities is the Weighted Essentially Non-
Oscillatory (WENO) scheme [74]. Several variants of this scheme
have been introduced, to improve its performances [58] [54] [52].
We are particularly interested in two families: the well-known robust
but dissipative WENO-Z [14] and the TENO (T for Targeted) [37],
which better discriminates scales [53].
Solvers. We have to solve the Riemann problems at the interfaces
between the cells of the mesh. One solution is to use an exact
Godunov solver [108] which takes into account a large number
of nonlinear operations - too expensive however when calculating
complex flows. Rather, researchers and engineers are interested in
approximate Riemann solvers. The most used approximate solvers
can be grouped in three large families: Flux Difference Splitting
(FDS), Flux Vector Splitting (FVS) and Flux Type Splitting (FTS)
[108]. In this section we will focus on two types of solvers in
particular, Flux Difference Splitting solvers that work as a finite
volume method to solve the Riemann problem and Flux Splitting
Riemann solvers that combine the qualities of the other two families
by separating kinematic and acoustic scales.
HLL (Harten, Lax, and van Leer) : FDS scheme developed by
Harten et al. [50]. It does not take into account contact discontinu-
ities, i.e. lines crossing two states. For turbulent phenomena, the
interface between vortices will therefore be less described.
Roe and HLLC (Harten, Lax, and van Leer with Contact) : FDS
type schemes developed by [109] [94]. These two schemes are
robust and thus allow to reproduce the strong discontinuity (shock)
and takes into account the discontinuities of contact. Thus, with
these schemes, the reconstruction of the vortices represented in our
flows, is perform with more accuracy than with the HLL solver.
In its study on low speed Riemann solvers, [91] notice that the
solvers are unable to obtain physical solutions. Therefore, there is
a need for approximate Riemann solvers to accurately reconstruct
both low and high speed flows. This is why we are interested in
two flux type splitting (FTS) solvers, which take into account all
velocities to obtain low Mach and high Mach physics solutions.
AUSM+-UP (Advection Upstream Splitting Method +UP) : By
adding improvements [73] to the AUSM+ [72] solver Liou increases
its level of accuracy for all speeds. This new solver takes into account
contact discontinuities, reconstructs also strong discontinuities and
gives physical solutions for all speeds.
SLAU2 (Simple Low-Dissipation AUSM 2) : the analysis of the
dissipation pressure term of the AUSM+ [99] shows that it is too
high for low speeds. The author decided to control the pressure flux
and implemented the SLAU solver. This has been extended [63] so
that the dissipation becomes proportional to the Mach number. This
solver takes into account contact discontinuities, reconstructs also
strong discontinuities and gives physical solutions for all speeds.

2.2 Topological data analysis

This section presents the topological background of our work. It
contains definitions adapted from the Topology ToolKit [106]. We
refer the reader to textbooks [26] for an introduction to topology.
Input data. The input data is given as an ensemble of N piecewise
linear (PL) scalar fields fi : M →R, with i ∈ {1, . . . ,N}, defined on
a PL 2-manifold M . Specifically, fi represents the pointwise flow

Figure 3: Critical points (spheres, white: minima, blue: maxima, other:
saddles), persistence diagram (b), persistence curve (c) of a noisy (a)
2D scalar field. The persistence diagram captures the main two hills
of the terrain as prominent persistence pairs (large vertical segments),
while small oscillations due to noise induce features near the diagonal.

enstrophy (Sec. 2.1) and M is the Freudenthal triangulation [48,56]
of a 2-dimensional regular grid, which is periodic in both dimensions
(M is homeomorphic to a 2-dimensional torus). The triangulation
is performed implicitly, by emulating the simplicial structure upon
traversal queries. Thus it induces no memory overhead [106]. The
scalar values are given at the vertices of M and are linearly inter-
polated on the simplices of higher dimensions. f is assumed to be
injective on the vertices of M . This is enforced in practice with a
symbolic perturbation inspired by Simulation of Simplicity [31].
Critical points. Topological features in fi can be tracked with the
notion of sub-level set, noted fi−1

−∞(w) = {p ∈ M | fi(p)< w}. It
is defined as the pre-image of (−∞,w) by fi. In particular, the
topology of these sub-level sets (in 2D, their connected components
and cycles) can only change at special locations. As w continuously
increases, the topology of fi−1

−∞(w) changes at specific vertices of M ,
called the critical points of fi [6], defined next. The star of a vertex
v ∈M , noted St(v), is the set of its co-faces: St(v) = {σ ∈M | v <
σ}. It can be interpreted as the smallest combinatorial neighborhood
around v. The link of v, noted Lk(v), is the set of the faces τ of
the simplices σ of St(v) with empty intersection with v: Lk(v) =
{τ ∈ M | τ < σ , σ ∈ St(v), τ ∩v = /0}. The link of a vertex can be
interpreted as the boundary of its star. The lower link of v, noted
Lk−(v), is given by the set of simplices of Lk(v) which only contain
vertices lower than v: Lk−(v) = {σ ∈ Lk(v) | ∀v′ ∈ σ , fi(v′) <
fi(v)}. The upper link is defined symmetrically: Lk+(v) = {σ ∈
Lk(v) | ∀v′ ∈ σ , fi(v′)> fi(v)}. A vertex v is regular if and only if
both Lk−(v) and Lk+(v) are simply connected. For such vertices,
the sub-level sets do not change their topology as they span St(v).
Otherwise, v is a critical point. These can be classified with regard
to their index I (v). It is equal to 0 for local minima (Lk−(v) = /0),
to 2 for local maxima (Lk+(v) = /0) and otherwise to 1 for saddles
(Fig. 3a). In practice, fi is enforced to contain only isolated, non-
degenerate critical points [29, 31]. In the case of the pointwise flow
enstrophy, local maxima denote the center of vortices in the turbulent
flow. However, since the critical point characterization is based on
a classification which is only local (restricted to the link of each
vertex), the slightest oscillation in the data results in practice in the
appearance of spurious critical points, especially in the case of noisy
data such as turbulent flows. This motivates the introduction of an
importance measure on critical points, discussed next, in order to
disambiguate vortices from noise.
Persistence diagrams. Several important measures for critical
points have been studied [21], including topological persistence [30],
which is tightly coupled to the notion of Persistence diagram [26],
which we briefly describe here. Persistence assesses the impor-
tance of a critical point, based on the lifetime of the topological
feature it created (or destroyed) in fi−1

−∞(w), as one continuously
increase the isovalue w. In particular, as w increases, new connected
components of fi−1

−∞(w) are created at the minima of fi. The El-
der rule [26] indicates that if two connected components, created
at the minima m0 and m1 with fi(m0) < fi(m1), meet at a given
saddle s, the youngest of the two components (the one created at



m1) dies in favor of the oldest one (created at m0). In this case, a
persistence pair (m1,s) is created and its topological persistence
p is given by p(m1,s) = fi(s)− fi(m1). All the local minima can
be unambiguously paired following this strategy, while the global
minimum is usually paired, by convention, with the global max-
imum. The symmetric reasoning can be applied to characterize,
with saddle/maximum pairs, the life time of the independent cycles
of fi−1

−∞(w). Persistence pairs are usually visualized with the Per-
sistence diagram D( fi) [26], which embeds each pair (c,c′), with
fi(c)< fi(c′), as a point in the 2D plane, at location

(
fi(c), fi(c′)

)
.

The value fi(c) is called the birth of the feature, while fi(c′) is called
its death. The pair persistence can be visualized as the height of
the point to the diagonal. Features with a high persistence stand
out, away from the diagonal, while noisy features are typically lo-
cated in its vicinity (Fig. 3b). The conciseness, stability [30] and
expressiveness of this diagram made it a popular tool for data sum-
marization tasks, as it provides visual hints about the number, ranges
and salience of the features of interest. To compare two datasets
fi and f j, persistence diagrams can be efficiently compared with
the notion of L2-Wasserstein distance [23, 61, 111] (we leave the
practical study of distances between more advanced topological
descriptors [90, 103] to future work). This distance is based on a
bipartite assignment optimization problem (between the points of the
two diagrams to compare), for which exact [80] and approximate [8]
implementations are publicly available [11,106]. Specifically, we use
in our approach the fast approximation scheme by Vidal et al. [112].
We refer the reader to [11, 61, 112] for further details. Once the
L2-Wasserstein distance between two diagrams D( fi) and D( f j) is
available (noted W2

(
D( fi),D( f j)

)
), more advanced geometrical ob-

jects can be considered, such as Wasserstein barycenters [111, 112],
which are diagrams minimizing the sum of their distance to an en-
semble of diagrams, and which consequently, can be considered as
a reliable representative of the ensemble. This notion of barycenter
is conducive to the design of clustering algorithms. The k-means
algorithm can be easily extended, by using W2 to measure distances
between diagrams, and by considering as cluster centroid, at each
iteration of the k-means, the barycenter of the cluster.
Persistence curves. A popular, alternate, representation of persis-
tence features is the notion of Persistence Curve, noted C ( fi), which
plots the population of persistent pairs as a function of their persis-
tence. Specifically, it encodes the number of pairs (Y axis) whose
persistence is larger than a threshold ε (X axis). For X = 0, Y is
equal to the total number of persistence pairs, while for the largest
values of X , Y indicates the number of prominent, high-persistence
features (Fig. 3c). In practice, large plateaus in this curve will in-
dicate stable persistence ranges, for which no (or few) topological
features are present in the data. These correspond to separations
(vertical line, Fig. 3c) between populations of topological features
of distinct persistence scales, typically the noise (low X values) and
the persistent features (high X values).

3 CASE STUDY

In this section, we give (i) a description of the ensemble (made pub-
licly available [81]) representing the Kelvin Helmholtz Instabilities
(KHI) computed on our institution’s facilities. Next, we state (ii) the
challenges in understanding such phenomena and we provide (iii)
theoretical hypothesis that our experimental protocols have to verify.

3.1 Data description
The initialization of the KHI was generated with two fluids of differ-
ent densities (ρ1, ρ2) (Fig. 4a). The different velocities of opposite
direction ({u1,v1},{u2,v2}) of the fluids create a shearing zone
where the turbulence appears with the KHI (Fig. 4b). While the
instability develops over time the main vortices grow (Fig. 4c). After
a longer simulation time, the main structures keep evolving (Fig. 4d)
and a large number of small-scale vortices appear in the vicinity of

Figure 4: Initialization of the Kelvin-Helmholtz instability (a). This
simulation was obtained with the AUSM+-UP solver with a TENO 5
order interpolation at physical times 0.25(b), 0.75(c) and 1.25(d). Red
spheres scaled by the persistence represent the maximum critical
points. Zoom of the turbulence structures (e).

Parameter Resolution Order Time Solver Scheme Total
HLL

256 5 t0 SLAU2 TENO
Value 512 7 t1 AUSM+-UP WENO-Z

1024 t2 Roe
HLLC

Number 3 2 3 5 2 180

Table 1: Parameter space of the HYPERION simulation code leading
to a total of 180 members for the ensemble dataset used in this study.

large-scale vortices (Fig. 4e) leading to a complex turbulent flow.
This variation in vortex scale, in addition to the chaotic flow geome-
try, is notoriously challenging for the analysis of turbulent flows.

The HYPERION simulation code introduced in Sec. 2.1 has been
used to generate the ensemble dataset. All the simulations have
been run on a supercomputer at our institution. Each simulation
have been executed in parallel using 16 MPI processes and have
been distributed over the supercomputer. The total simulation took
about 745 CPU hours. The raw data has been dump on disk with
the metadata stored in XDMF files and the scalar fields in HDF5
files leading to 14 GB for the entire ensemble dataset. We processed
these results to extract the enstrophy scalar field (Eq. 3) and stored
it to a VTK file format [64] using an image data structure for regular
grids (VTI). This reduces the entire ensemble to 600 MB.

The ensemble dataset corresponds to different computational con-
figurations for the same turbulent instability. HYPERION handles
different parameter types such as scalars or enumerations, which
allows the users to compute various numerical simulations in the
same parametric study. The resolution of the 2D regular grid, the
simulation time, the interpolation scheme, the order of interpolation
and the Riemann solvers presented in Sec. 2 are our different param-
eters. Tab. 1 details the parameter types and values as well as the
number of samples per parameter, leading overall to an ensemble of
3×2×3×5×2 = 180 members illustrated Fig. 1a. Each parameter
value of Tab. 1 used to run the simulation has been stored as meta-
data in the VTI files (i.e. Field Data in the VTK terminology) to
keep track of the computational configuration for later analysis down
the pipeline. In order to ease the exploration of the ensemble dataset,
we defined a SQL-type database using the cinema database feature
of TTK [11, 106]. This representation facilitates the extraction of
sub-samples of the ensemble, based on standard SQL queries on the
simulation parameters (Tab. 1).



Figure 5: Persistence curves for two input scalar fields (X-axis: persis-
tence threshold, Y-axis: number of maxima more persistent than X).
S1 generated with two Gaussian functions with noise and S2 with 10
Gaussian functions with a stronger noise. Maxima critical points are
represented by red spheres scaled by persistence. Vertical line corre-
sponds to (a) small persistence critical points, (b) to high persistence.
The grey area is the integral difference between the two curves.

3.2 Problem statement

Vehicle design, be it in an automotive or aeronautical context, is well
known for its high number of constraints that are nowadays most
often handled with the help of computational techniques. In the
aeronautical world for instance, engineers today face an incredible
challenge wherein they have to be able to predict, at the same time,
integral quantities at the wall of the vehicle such as heat flux or
pressure as well as three-dimensional phenomena such as flow dis-
continuities and turbulence. In other words, engineers have to deal
with multiple types of physics and phenomena that have markedly
different length- and time-scales but whose interactions are still of
great importance to the accuracy of their predictions. With limited
time and resources to conduct the computer-aided simulations, the
traditional approach is to rely on numerical strategies that temporally
average most of the three-dimensional phenomena and rely more or
less on models of turbulence to yield a fast and reasonable forecast.

Even in such a context of approximate simulations, the choice of
the ingredients of the numerical recipe matters - methods of recon-
struction, Riemann solvers, etc. Making the right choices can indeed
bring a significant increase in fidelity to the engineer, especially in
terms of turbulence, by lessening the need for modeling and hence-
forth bring more margin in the design of the vehicle. Turbulence
is however by nature a chaotic phenomenon and conducting a sys-
tematical study of the impact of the different numerical ingredients
thereupon might prove tricky for a simple reason: beyond a certain
level of accuracy, everything will look the same. Detecting the ben-
efits of one method compared to another in that situation will be
next to impossible - that is, with traditional techniques. We propose
here to use the ability of topological analysis to discern features that
stay otherwise hidden in traditional fluid dynamics postprocessing
to help with the choice of the right numerical ingredients.

3.3 CFD Hypotheses

This section introduces the hypotheses provided by CFD experts,
documenting their expectations about ensemble flow variability.
Hypothesis H1. TENO induces more turbulence (i.e. more critical
points) than WENO-Z, for all configurations.
Hypothesis H2. Order 5 and 7 are equivalent for Kelvin Helmholtz
instabilities.
Hypothesis H3. The HLL solver should provide a significantly
distinct description, for all configurations.
Hypothesis H4. The HLLC and Roe solvers should provide
equivalent outputs for all configurations.
Hypothesis H5. The SLAU2 and AUSM+-UP solvers should
provide equivalent outputs for all configurations.

The above hypotheses are direct consequences of observations, or
design choices. For instance, the TENO scheme has been reported
to capture turbulence more accurately [87], which is expressed by
Hypothesis H1. Similar kinetic energy curves (Fig. 2) have been
reported for the orders 5 and 7, which is expressed by Hypothesis
H2. The HLL solver, which is a dissipative approach, is known
to model contact discontinuities poorly in contrast to more recent
solvers, which is expressed in Hypothesis H3 [108]. Finally, unlike
the SLAU2 and AUSMUP (FTS type) solvers, the HLLC and RoE
(FDS type) solvers have been reported to provide unphysical results
at both low and high velocities (resulting in local oscillations in
pressure and density), which is expressed in Hypotheses H4 and H5.

From a practical point of view, the validation of these hypotheses
has a major impact for the engineers when setting up their simula-
tions. For instance, the validation of the Hypothesis H1 would justify
the usage of a more computationally expensive scheme (TENO),
while the validation of the Hypothesis H2 would enable the usage of
less computationally expensive orders (5 instead of 7). Finally, the
validation of the Hypotheses H3, H4, and H5 would help engineers
properly select the most appropriate solvers, based on their flow
characteristics. Then, overall, the validation of these hypotheses
would provide reliable rules-of-thumb for the tuning of the solvers,
to achieve the best balance between accuracy and speed.

3.4 Baseline analysis

Traditional approaches for turbulent data analysis (Fig. 2) are based
on an average of quantities of interest, such as flow energy (Sec. 1.1).
The L2 norm is another established distance for comparing scalar
fields. Both strategies bear similarities in their averaging artifacts:
they cannot distinguish the contribution of small structures from the
global flow, because these are masked by the weight of larger vor-
tices. Moreover, the L2-norm is also very sensitive to mild geometric
variations, whereas the chaotic nature of turbulent flows induces ma-
jor geometric variations between ensemble members. This motivates
the usage of topological methods to capture features in the KHI that
will help us compare the members (Sec. 5). In the remainder, we will
systematically compare our protocols based on topological distances
(Sec. 4) to the L2 norm, considered as the baseline approach, and
detailed comparisons will be provided (Sec. 5).

4 EVALUATION PROTOCOLS

In this section, we present 3 protocols which can be used to verify
the hypotheses detailed in Sec. 3.3. One can directly use these algo-
rithms on the ensemble dataset. It corresponds to (i) the separation
of the schemes and the independence of the orders, (ii) the unique
behavior of the HLL solver and (iii) similarities in class of solvers.

4.1 Persistence curves

With this protocol (illustrated on toy examples, Fig. 5), we want to
validate hypothesis H1 (Sec. 3.3) to discriminate the interpolation
schemes TENO and WENO-Z regarding the differences in the en-
strophy field. With this protocol, we also want to validate hypothesis
H2 (Sec. 3.3) to confirm the independence of the orders [95]. To
better characterize the vortices influencing the turbulence, we use
persistence curves (Sec. 2.2). These curves will allow us to thresh-
old the structures (the eddies) at different scales and thus to easily
compare the number of small (Fig. 5a) and large (Fig. 5b) eddies
using the integral of the persistence curve.

For the differentiation of the schemes, we take 5 simulation config-
urations where the physical time (t0, t1, t2), the resolution (256×256,
512× 512, 1024× 1024) and the order (5,7) are fixed per sample
(Tab. 1). The variation is the interpolation scheme (TENO, WENO-
Z). For the order independence, 5 configurations are also chosen
by fixing the physical time (t0, t1, t2), the resolution (256 × 256,
512× 512, 1024× 1024), the scheme (TENO or WENO-Z). The



Figure 6: Wasserstein distance matrix for five inputs S1, S2, S3,S4, S5
generated respectively with two, five, four and three Gaussians with
varying noise. The sum of each matrix line is normalized with respect
to the scalar-field that maximizes the distances, here S1. We see that
S1 with only two Gaussians is very far from the other datasets.

Figure 7: Wasserstein distance matrix for five inputs S1, S2, S3, S4, S5
generated respectively with two, five, for and three Gaussian functions
with different noise levels. Point cloud of the inputs in the Wasserstein
distance space colored according to the clusters obtained with the
k-means clustering method. We can see that each terrain in a cluster
has the same number of Gaussian and level of noise.

variation is done on the order (5,7). Besides different input varia-
tions, this protocol is the same for testing H1 and H2.

The persistence curves are generated for all the samples. Then,
we average the 5 persistence curves (one per solver) to obtain 2
average persistence curves with respect to the variable parameters
(schemes or orders). Finally, we compute the difference of the
integrals between the two averaged curves (grey area on Fig. 5). The
small values on the curves under a persistence of 10−6 correspond
to numerical noise coming from the different simulation steps. They
are removed from the computation of the integral with a threshold
at 10−6(Fig. 5.a). The integral curve difference corresponds to our
metric allowing to precisely describe the similarity in the topology
of the critical points. Bigger is the integral, the more different the
topology of the flow is. Thus, to verify hypothesis H1 related to the
scheme, we want the difference of the integrals to be high. To verify
hypothesis H2 related to the orders, we want the difference of the
integrals to be close to zero.

4.2 Outlier distance profile
With this protocol (illustrated on toy examples, Fig. 6), we want
to validate hypothesis H3 (Sec. 3.3), which means that for all the
simulation configurations the HLL solver will be very different from
other solvers to describe the Kelvin-Helmholtz instabilities. For
this protocol, we take 5 simulation configurations where we fix the
reconstruction (TENO or WENO-Z), the physical time (t0, t1, t2), the
mesh (256×256,512×512,1024×1024), the order (5 or 7) and we
vary the solvers. The 5 different computations describing the same
turbulent flow obtained with the solvers (HLL, SLAU2, AUSM+-UP,
HLLC and Roe) are analyzed regarding to the enstrophy.

A distance is used to compare the topology of the enstrophy.
Many methods can be used to compute such a distance but in this
protocol we focus on 2 metrics: the L2-norm distance directly on
the values of the enstrophy and the Wasserstein distance on the
persistence diagrams. One can inject other distances if needed.
For the Wasserstein, the saddle-maximum persistence diagram is

computed on each result. Then, they are grouped in a unique dataset
to compute a persistence diagram distance matrix (Fig. 6). For the
L2-norm, a distance matrix is also created where a line corresponds
to the distance in the enstrophy field from one solver to the others.

Thus, the sum of the distances from one solver to the others is
computed by summing the distances on one line of the matrix. The
total distance of one solver to the others, for all configurations, is
simply the sum of all these sum distances for every line of the matrix
which correspond to the same solver. We finally obtain one global
distance per solver for all configurations. Finally the difference
between the distance of the HLL and the distance of the maximizer
(the second value if HLL is the maximum) gives a separation score.
If the difference is positive, then hypothesis H3 is verified whereas
it is not if negative, because it means that another solver generates a
flow topologically more different than the HLL. With this protocol,
best separations are obtained for high absolute values.

4.3 Unsupervised classification
With the last protocol (illustrated on toy examples in Fig. 7), we want
to validate hypotheses H4 and H5 (Sec. 3.3). We want to verify that
the simulations with the Roe and HLLC solvers are topologically
close (hypothesis H4) and the simulations with the AUSM+-UP and
SLAU2 solvers are topologically close (hypothesis H5). To do so,
three clustering methods will be used based on Wasserstein distances
and the L2- norm(Sec. 2.2).

For the first two clustering methods, we start by computing dis-
tance matrix with the protocol of the outlier distance profile Sec. 4.2
using successively the Wasserstein distance and L2-norm matrices
(Fig. 7a). We apply a dimension reduction to project the distances of
the matrix according to 2 components (Sec. 2.2). This projection is
used to generate clusters of the matrices with a k-means algorithm
(Sec. 2.2) as illustrated on Fig. 7b. The third clustering method
uses directly the persistence diagrams(Sec. 2.2) without using the
distance matrix. All the persistence diagrams are merge into a single
dataset to compute the Wasserstein distances between each dia-
gram. The barycenter of persistence diagram is then used to directly
compute a cluster, without dimension reduction, in the Wasserstein
metric space [112] with the W2 distance. Then a k-means algorithm
(Sec. 2.2) is applied.

With these three classification methods, we obtain different asso-
ciations of our configurations. Each association is going to be scored
with a measure of similarities between the clusters regarding to a
reference cluster using the Rand Index [92]. This Rand index has
a value between 0 and 1, with 0 indicating that two clusters do not
agree on any pair of points and 1 indicating that the data clusters are
exactly the same. Based on the properties of the solvers used in the
simulation code HYPERION and detailed in Sec. 2.1, we define our
reference cluster such that the first partition contains the AUSM+-
UP and SLAU2 solvers, the second partition the HLLC and Roe
solvers and the third partition the HLL solver. The Rand Index is
computed for each configuration and averaged per clustering method.
This enables the ranking of the different solver behaviors. If the
average Rand Index score is close to 1 then both hypotheses H4,
showing similarity between the AUSM+-UP and SLAU2 solvers
and H5, showing the isolation of the HLL solver, are verified.

5 RESULTS

This section presents our experimental results and their interpreta-
tions, for the protocols presented in Sec. 4, applied on the ensemble
data described in Sec. 3 (publicly available [81]).

5.1 Persistence curve study
We applied protocol 1 using the persistence curves, on our ensemble
dataset of Kelvin-Helmotlz instability (KHI) to verify the hypotheses
of separation of the schemes (H1) and the independence of the orders
(H2)(Sec. 3.3). The input parameters are setup as detailed in Sec. 4,



Figure 8: Schemes (left) and order (right) studies. Average persistence curves for 5 configurations with variations of : a (WENO-Z,5), c (WENO-Z,
7), f (WENO-Z, 5), h (TENO,5). (b,g) persistence curves at t0 (top), t1 (middle), t2 (bottom). Vertical lines on the curves correspond to critical points
of small (left) and high (right) persistence. (d,e) Integral differences (grey area) between average persistence curves for all variations.

Figure 9: Comparison between the W2 metric (left) and the standard L2-metric (right) for isolating the HLL solver. (a,h) Distance matrix for 20
configurations at t2 at 512×512. Black frames represent the distance between the TENO 7th order with the HLL (matrix lines marked by ⋆) and the
other configurations (b,g). Histograms (c,e) are respectively the percentage average of the sum distance matrix of (a,h). Histograms (d,f) are
respectively the percentage of the sum distance for all variations.

generating 36 studies. The terrains and curves on Fig. 8 illustrate
the result for one configuration with a 5th order WENO-Z (Fig. 8.a),
a 7th order WENO-Z (Fig. 8.c), a 5th order WENO-Z (Fig. 8.f) and
a 5th order TENO (Fig. 8.h). For the scheme comparison, most of
the averaged persistence curves for the TENO schemes (blue curves
on Fig. 8g) are above the WENO-Z curves (green curves on Fig. 8g).
The integral difference, between the average curves, obtain results
between [−5.6,5.2] (Fig. 8.e), which demonstrates differences on
the topology of the enstrophy between the interpolation methods as
expected. Hypothesis H1 is verified on the KHI ensemble dataset.
For the study on the independence of orders, we see that the averaged
persistence curves are often close (Fig. 8b). However the integral
differences obtained for this study show larger values for the WENO-
Z, i.e in between [−0.5,8.1] (Fig. 8.d). This analysis highlights
that orders play a more important role, in terms of topology of the
vortices, for WENO-Z than for TENO. Moreover, we observe that
this difference tends to increase at t2 for both studies confirming that
the flow is composed of a larger number of vortex as the simulation
evolves. Hypothesis H2 is verified for the TENO solvers but not for
the WENO-Z (Sec. 5.4).

5.2 Outlier distance profile study
To verify the HLL isolation states in hypothesis H3 (Sec. 3.3) on our
ensemble dataset, we implemented our protocol 2 (Sec. 4) based on
the Wasserstein distance and the L2-norm (Sec. 2.2). For this study
we apply protocol 2 where the time and the resolution are fixed. The
parameters that vary are the schemes (×2), the orders (×2) and the
solvers (×5) (Tab. 1) thus generating 20 cases. All the distances
have been computed according to the protocol of the outlier distance
profile. These distances are represented by a global distance matrix
where a line represents the 20 configurations (Wasserstein Fig. 9.a
and L2−norm Fig. 9.h) compared to a the HLL solver choosen as
the reference. The matrix view of Fig. 9b and Fig. 9g show the KHI
terrains and the distances of all configurations to the HLL solver.

The study has been done for all time steps and all resolutions
generating nine 20×20 distance matrices, for each distance. The his-
tograms (Figs. 9.c and 9.e) show the average of these nine distance
matrices for the Wasserstein distance and the L2-norm, expressed in
terms of percentage according to the distance of HLL to the other

solvers (HLL being the reference at 100%). In this case the percent-
age difference in distances to HLL are about 18% (Fig. 9.d) for the
Wasserstein and 13% for the L2 (Fig. 9.f). These large percentages
confirm that HLL is a solver that behaves differently from others. As
it does not take into account contact discontinuities, the interfaces be-
tween the vortices are much less defined than with the other solvers,
resulting in a different number of vortices. From a physical point
of view, this result confirms the isolation of HLL in all cases. From
a topological point of view, it shows that the Wasserstein distance
is the best at differentiating the HLL solver from the others (the
distance gap is always bigger than the L2). For this large study of 18
distance matrices 20×20, the hypothesis H3 is verified.

5.3 Unsupervised classification study
To improve our understanding on the behavior of the solvers into
our simulation code, we implemented protocol 3 on the unsuper-
vised classification (Sec. 4) to verified the hypotheses H4 and H5
(Sec. 3.3). The goal is to identify the separation of FDS type solvers
from the FTS type solvers (Sec. 2.1). We are interested in the low
Mach reconstructions (Sec. 2.1). The challenge comes from the fact
that small vortices are reconstructed on only a few cells. So, we
implemented protocol 3 with the distances and clustering method
detailed in Sec. 4 leading to 5 simulation configurations (Tab. 1)
with variable solvers. To focus on the small vortices we used a
threshold of 0.38 persistence for the topological methods. On the
KHI ensemble, we generated 36 clusters from the threshold persis-
tence diagrams and obtain the Rand Index for all of them. Fig. 10.a,
Fig. 10.b, Fig. 10.c show the W2∗ clustering for the three timesteps
and Fig. 10.d, Fig. 10.e, Fig. 10.f for the L2.

Histogram Fig. 10.h shows the average Rand Index for the three
methods with a value of 0.63 for L2, 0.66 for W2 and 0.71 for W2∗.
There is very little difference between the topological and geometric
results and each of the methods struggles to get the right cluster.
Hypotheses H4 and H5 are not verified for high orders. However,
to highlight the differences between solvers, it is necessary to use a
reference reconstruction that barely captures small scale turbulence
due to order dissipation (Sec. 2.1). Thus, we applied protocol 3
(Sec. 4) on a more restricted dataset at order 1. Histogram Fig. 10.g
shows the average Rand Index at order 1 with the three methods



Figure 10: Comparison between the clustering on the Wasserstein metric space [112] (top frame) and a clustering based on the traditional L2
norm (bottom frame) for distinguishing FDS solvers from FTS solvers. Point clouds at t0, t1,t2 with a first order scheme at 256×256. The point
cloud is a representation of the five scalar-fields in the distance space colored according to the clusters obtained. The Rand Index are computed
with the five configurations S1 (SLAU2), S2 (HLL), S3 (AUSM+-UP), S4 (Roe), S5 (HLLC). (g,h) Average Rand Index for all variations for the high
orders (bottom) and the first order (top).

leading to 0.63 for L2, 0.71 for W2 and 0.78 for W2∗. In this case, we
notice that for any reconstruction, the topological methods obtain
better clustering. Moreover, the study with order 1 shows that the
W2∗ method enhances solver isolation. With this high score of the
Rand Index hypotheses H4 and H5 are verified with the first order.

5.4 Unanticipated insights

During the analysis of the persistence curves generated by our pro-
tocol 1, we found significant differences on the topology of the
enstrophy between the orders for the WENO-Z. By increasing the or-
der, we increase the accuracy of our calculation that generates more
structures into the turbulent flow. On the other hand, there is no
difference between the orders obtained with the TENO. This means
that other ingredients in the TENO reconstruction play an important
role in the computation of the turbulence such as the separation of
the scales. In addition, the persistence curves also allowed us to
observe that the WENO-Z schemes produce more numerical errors
than the TENO. As presented in Sec. 5.3, H4 and H5 hypotheses
have not been verified for high orders. This means that the topolog-
ical analysis does not capture the differences between the solvers.
This may be due to the reconstructions which are accurate enough
to calculate all velocities in the Kelvin-Helmholtz instability.

5.5 Limitations

As discussed in Sec. 5.2, in comparison to the L2 norm, the Wasser-
stein distance improves the separation of the HLL solver, but only by
5% (distance difference percentage). While this improvement may
seem marginal, we would like to stress its significance given such
challenging data, in particular with regard to the traditional approach
based on kinetic energy, shown Fig. 2, where the five solvers can
hardly be distinguished from each other. Similarly, we can see that
the Rand Index score for the three clustering methods detailed in
Sec. 5.3 are quite close to each other as illustrated on Fig. 10.h.
These close scores are due to the interpolations schemes (Sec. 2.1)
which cover up the differences between the different solvers. In other
words, the variations in vortex distributions induced by the choice
of solver are too subtle, given the importance of the interpolation
order on the outcome. As shown in Fig. 10 (top), we were still able
to overcome this limitation by considering a reconstruction that is
not dedicated to turbulence, i.e. an upwind scheme of order 1. This
enabled us to exaggerate the impact of the solvers, thereby allowing
us to validate hypotheses H4 and H5 as reported in Sec. 5.3.

6 CONCLUSION

In this paper, we have presented an experimental protocol for the
comparison of numerical methods on a Kelvin-Helmholtz instability
using topological analysis. An ensemble dataset of 180 members has
been computed for this instability by a simulation code developed in
our institution and running on a supercomputer. While traditional
approaches based on the kinetic energy (Fig. 2) only enable to
validate the physical conformity of the generated flow, our overall
approach provides finer analyses. In particular, the protocol using
the persistence curves (Sec. 4.1) allowed us to observe differences
between the TENO and WENO-Z reconstructions. It also confirms
an independence of the reconstruction order (5 or 7) when using the
TENO scheme allowing practical computational speedup, without
loss of precision. The protocol based on the Wasserstein distance
(Sec. 4.2) succeeded in discriminating the HLL solvers from other
configurations, validating the use of such a topological analysis
to confirm domain field expectations. The last protocol, based on
recent clustering methods (Sec. 5.3) successfully differentiates the
topology of computations based on FDS (Flux Difference Splitting)
and FTS (Flux Type Splitting) solvers. Overall, the validation of
the hypotheses reported by CFD experts (Sec. 3.3) provides reliable
indications for the tuning of a flow simulation, to help CFD users
achieve the best balance between computation accuracy and speed.

The results obtained in this experimental study also show the via-
bility of topological methods for the representation and comparison
of Kelvin-Helmholtz instabilities. The interesting aspect of these
topological protocols is that the numerical method comparisons are
based on physical differences rather than on unreliable, low-level,
pointwise measures. The direction we wish to take now, for our
future work, is the extension of these protocols to 3D datasets of
external hypersonics aerodynamics. Another direction we want to
investigate is the evaluation of other tools used in the protocol such
as new topological distances [90] or clustering methods. Finally, this
experimental study allows us, with confidence, to consider applying
these protocols to other hydrodynamic turbulent flows studied in our
institution in the domain of hypersonic vehicle design.
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