The 8th European Congress on Computational Methods in Applied Sciences and Engineering
ECCOMAS Congress 2022
5--9 June 2022, Oslo, Norway

IMMERSED BOUNDARIES IN HYPERSONIC FLOWS WITH
CONSIDERATIONS ABOUT HIGH-FIDELITY AND MASSIVE
PARALLELISM

F. NAULEAU', T. BRIDEL-BERTOMEU?, H. BEAUGENDRE? AND F. VIVODTZEV*

I CEA-CESTA, Le Barp, France, florent.nauleau @cea.fr
2CEA-CESTA, Le Barp, France, thibault.bridelbertomeu@cea.fr

3 Univ. Bordeaux, INRIA, CNRS, Bordeaux INP, IMB, UMR 5251, F-33400, Talence, France,
heloise.beaugendre @math.u-bordeaux.fr

4 CEA-CESTA, Le Barp, France, fabien.vivodtzev @cea.fr

Key words: Hypersonics, Immersed Boundaries, Rasterization, Migratable Tasks, LES

Abstract. This paper inscribes itself in the ongoing doctoral work of the first author which aims at
adapting the immersed boundary conditions (IBC) technique to three-dimensional (3D) large eddy sim-
ulations (LES) of viscous hypersonic flows around complex vehicles. The work relies on a pre-existing
in-house IBC code, HYPERION (HYPERsonic vehicle design using Immersed bOuNdaries), originally
developed in two dimensions (2D) as a proof of concept that it is possible to use IBC in the presence of
strongly shocked flows [4].

As a first step towards the optimization of the 3D HYPERION, we discuss in this paper a novel MPI/Open
MP hybrid rasterization algorithm allowing for the detection of immersed cells in record time even for
very large problems.

We then consider the least-square-based reconstruction algorithm from HYPERION [4]. It was shown
in the original paper that the number of neighbors used in the reconstruction is directly related to the
condition number of the least-square matrix and an optimum can be found when the condition number
reaches an asymptote. In 3D configurations it is found that the number of neighbors has to be very high
to ensure the proper conditioning of the least-square matrix. If the computation is distributed on several
MPI processes (as is always the case in 3D for realistic return times), gathering the information from
that many neighbors can cause obvious communication issues - it amounts to covering large stencils with
unrealistically large MPI halos. We therefore introduce an algorithm designed for a hybrid MPI/OpenMP
environment based on migratable tasks and the consensus algorithm developed by [9] to remedy the
former shortcoming.

Finally, we discuss the premise of the implementation of LES capabilities in HYPERION. The last
milestone of the main author’s doctoral work is indeed to study the feasibility of embedding wall laws in
the IBC modeling and reconstruction algorithm to try and counteract the low accuracy of the near-wall
phenomena caused by the lack of body-fitted mesh.

F. Nauleau, T. Bridel-Bertomeu, H. Beaugendre, F. Vivodtzev

1 INTRODUCTION

Numerical simulations of hypersonic flows have been supplementing experimental wind-tunnel testing
for many years. Today flow simulations in the high-supersonic and/or hypersonic regimes are becoming
a common sight both in the academic and in the industrial worlds and in many domains [24, 38, 5, 15, 3].
One of the most important ingredients to obtain accurate results from such simulations is commonly
found to be the mesh. However, the cost of generating a body-fitted mesh around complex geometries
such as those used for hypersonic planes, blast-resistant building, etc...can be high, and it is still today
a trending topic to accelerate and improve the robustness of the process. In the context of computer-
aided end-to-end vehicle development, numerous computations have to be made, iterating on successive
designs, and the days taken to make the mesh for every iteration can amount to a non-negligible part of
the allotted project time. The present paper inscribes itself in the doctoral work of the first author and
follows the work of the second author [4] that aims at showing that it is possible to use an immersed
boundary technique to cut the mesh generation time, and produce a piece of software that is robust,
efficient and accurate enough to handle viscous hypersonic flows.

In this short study, we investigate how to enable massively parallel simulations with an immersed
boundary-based CFD code. Based on preliminary results from the code used in Bridel-Bertomeu study
[4], we propose to overcome two major obstacles on the path towards massive parallelism. The first
obstacle concerns the manipulation of the objects themselves, when immersed in a Cartesian mesh.
For extremely large Cartesian meshes and finely tesselated objects, the different ray-casting algorithms
mentioned in [4, 33, 23] prove to have too high an algorithmic complexity to be reasonably use in three-
dimensional simulations. The second obstacle we propose a solution to, in the present study, occurs
during the interpolation stage of the immersed boundary workflow. At each iteration of the fluid solver,
when the values to be set in the immersed ghost cells are to be computed, the multidimensional inter-
polation process requires data from, potentially, an elevated number of neighbors. In the context of a
partitioned mesh and distributed parallelism, accessing neighbors that are a few cell layers away can be
challenging and can cause an unacceptable overhead in computational time due to the increased number
of communications between neighboring processes.

With the two algorithms we will introduce, we will show that we finally make accessible massively paral-
lel simulations with HYPERION on thousands of distributed processes. This will lead to a discussion and
an investigation of the predictive capabilities of HYPERION in three dimensions. The investigation is
ongoing but some elements for implementing a large eddy simulation (LES) framework in HYPERION
will be discussed, and some preliminary results will be shown.

2 HYPERION IN A FEW WORDS

The code used in this study, i.e. HYPERION, solves the three-dimensional compressible Navier-Stokes
equations with source term. A dimensionless formulation is used to minimize the stiffness of the system
in high-Mach & high-Reynolds numbers regimes. Mathematically, the system can be written as follows
[32]:

U +F:+Gy+H, =E" + EJ + E;* + S, (1)

where the subscripts indicate differentiation, U is the vector of conservative dimensionless variables

F. Nauleau, T. Bridel-Bertomeu, H. Beaugendre, F. Vivodtzev

and F (E"), G (E"”) and H (E"?) represent the inviscid (viscous) fluxes in x—, y— and z—direction
respectively and S represents a volumic source term. Those vectors are defined as such:

P pu pv pw
pu pu2 +p pvu pwu
U=| pv |, F= puv , G=| p?+p |, H= pwy ,
pw puw pvw pw2 +p
pE puE + pu pvE + pv pwE 4+ pw
[0 0
Tx Tay
E" = Tyx , EW = Tyy , 2)
Tox Tzy
| Taxld + TayV + ToeW — Gx Tyl + TyyV + Ty, W — gy
i 0
Tz
E" = Tyz
TZZ
L Toxlh + TV +TeW — ¢

In the above dimensionless expressions, ¢ denotes the time and x, y and z are the Cartesian coordinates.
p denotes density, u, v and w denote the x—, y— and z—direction velocity components respectively, £
denotes the specific total energy and p denotes the static pressure. T is the viscous stress tensor and q the
heat flux vector. Here a simple perfect gas is considered and therefore the specific total energy can be
related to the other variables using:

L p 1.5 5
E=—=—4- 3
v—1p 2(u+v), 3)
where 7 is the ratio of specific heats and if not specified otherwise we will take y = 1.4 in the rest of this
study. As is often done for high-Mach number compressible flow solvers, we here use the freestream
speed of sound «, to nondimensionalize the velocity. The relations between the dimensionless and the
dimensional variables are therefore:

p_pz7 pP= ;ai;za [M,V,W]— iviv?) [Xa)’al]— Z7Z7z) t_%v (4)
where the starred variables denote dimensional variables and L is a reference length. With this formula-
tion, and assuming the fluid is Newtonian, has zero bulk velocity (Stokes’ hypothesis) and is only subject
to heat diffusion, the viscous stress tensor and the heat flux vector can be written as:

*
oo

F. Nauleau, T. Bridel-Bertomeu, H. Beaugendre, F. Vivodtzev

T=j [-i(V-v)]IJerJr(VV)t} ,

. 5

W (p) ®
q=———"—=v(L),
(y=1pr \p
where the scaled dimensionless dynamic viscosity i is defined by:
Ma u
~ 6
fr=—o (6)

with Ma the Mach number of the freestream and Re its Reynolds number. In this work, the dimensionless
dynamic viscosity u is assumed to depend on the dimensionless temperature 7 = yp/p by Sutherland’s
law (see e.g. [39]):

C
1+ T
p=——"7¢T2, (7
T+ —
Eef
where C = 110.4 K and T is the freestream temperature (in K). A detailed account of common nondi-

mensionalization for the Euler and Navier-Stokes equations can be found, among others, in [32].

2.1 Cartesian fluid domain discretization

In this particular study, we use only Cartesian grids with constant grid spacings Ax, Ay and Az. Based
on such a mesh, the finite-volume method [26] is employed for space discretization of the compressible
Navier-Stokes equations (1). An exhaustive description of the technique adapted to Cartesian grids is
given in [4]: we shall only present here a few select details to expose the core of HYPERION.

2.1.1 Mixed finite-volume/finite-difference numerical scheme

In HYPERION, when solving numerically the Navier-Stokes equations (1), we mix a finite-volume flux-
balance formulation for the hyperbolic terms (F,, G, and H;) and a finite-difference formulation of the
gradients involved in the parabolic terms (E} , /) whereas the (optional) source terms are computed di-
rectly at the cell centers. The flux-balance is obtained with numerical fluxes computed at each face of
each cell using an approximate Riemann solver [37] relying on left- and right-interpolated values from
the neighboring cells. The mathematical expression of this mix formulation, as well as a selection of re-
constructions and Riemann solvers present in HYPERION will be discussed in the following paragraphs.

Considering that in the present case all cells are quadrangles, the flux-balance can be split by direction,
and the final mathematical expression of the space discretization used in HYPERION can be written in
cell c as:

A A

dU. Fiapje—Fipje Gijripre—Gijpx Hijrrip—Hijeep

dt Ax Ay Az (8)
+ Dy (EY) + Dy (E7) + D, (EZ°) + S

F. Nauleau, T. Bridel-Bertomeu, H. Beaugendre, F. Vivodtzev

where i, j and k are the indices of cell ¢ along each direction, and i +1/2, j+1/2 and k4 1/2 represent
the faces of the cell in each direction as well.

The vector F (resp. G, H) is a numerical approximation of the inviscid physical flux F (resp. G, H) at
the faces of the cell of interest and can be expressed in a most general manner as:

N

L R
Fiip60=1 (FiLil/z,j,k»Ffil/z,j,k’Uiil/z,j,bUiil/z,j,k) ;)

where U stands for a generic approximate Riemann solver while the superscripts L and R designate
respectively the left- and right-biased reconstruction of either F or U at the faces of the cell of interest.
A similar CXpI‘CSSiOl’l stands for Gi,jil/l,k and Hi,j,ki1/2-

The derivatives involved in T and q are computed as follows for any variable ¢ in cell (i, j, k) and along
any dimension d € {x,y,z}:

a(Pz; jk
od

where D), represents a centered finite-difference-like differentiation operator along dimension d. In this

Da (91 k) (10)

study we use either a second- or a fourth-order operator, respectively denoted @(52) and @¢(14)' They are
defined as:

@)y Ptk —Pi-1,jk
and
i—2,jk — 8@i—1,jk + 8Qit1 jk — Pit2,
@§4>(@i’j7k):<P 2,7k = OQi1,jk T OPi+1,jk = Pit2,jk (12)

12Ad

2.1.2 Reconstruction schemes

As mentioned in introduction to section 2, HYPERION is designed to provide numerical predictions of
viscous compressible flows. In particular, we are interested in hypersonic regimes where the Mach num-
ber and the Reynolds number are very high. In layman terms, the flow will therefore exhibit very strong
large scale discontinuities (shock & contact waves) as well as small scale viscous eddies - HYPERION
has to capture both. To do so, we turned to high-order reconstructions (to capture the smallest scales)
with good properties in the presence of discontinuities, especially that have a non-oscillatory property
preventing too strong over- and under-shoots in the vicinity of discontinuities.

The well-known family of WENO-Z schemes! was added to HYPERION [29, 22, 21, 19] for their
robustness and their theoretical high-order. Satisfactory results were obtained in the hypersonic regime,
although the viscous small scales tended to be too dissipated.

This last comment pushed us to implement and use the newer generation of TENO [12, 20] schemes? that
allow for better discrimination between the large discontinuous events and the small eddies produced by

'WENO stands for Weighted Essentially Non-Oscillatory.
2TENO stands for Targeted Essentially Non-Oscillatory.

F. Nauleau, T. Bridel-Bertomeu, H. Beaugendre, F. Vivodtzev

viscous turbulence. The interested reader is referred to the family of papers by Fu et al. for more details
[12, 13, 14, 10, 11], while we only recall below the 5%_order formulation that we make most use of.

[—L.1 1, — — —
O X\ Uitiynjk = ¢ (—Ui-1,j +5U0 ik +2Ui+1,j,k):|
—L L2 1, — — —
Uiz =+ 0 % | U ju = ¢ (Ui + 5U0sjk —Ui+2,j7k)} (13)
(13 1, — _ _
t o3 x \Uiipju=¢ (20i2,jk = TUi 1 ji + 11Ui,j,k)]

where ;3 are nonlinear weights. To define w; we need to calculate the Y, a.k.a. the smoothness
indicators:

q
Y= <C+ B:_’;g) (14)

where C is set to 1, g is hardcoded to 6, and € is an input parameter typically kept very small ; in this
study we use 1075, The per-stencil finite-difference operators [B; are given by:

1 13
P = 70 —fj+1)2+§(fj—1 —26+£;41)°
1 , 13 5
Bo= B —4fj1 +1512)" + 15 (8 — 2500 +8512) (15)
1 , 13 ,
Bs= (f2—afj1+36;)"+ - (£j2— 251 +£5)
and
1
Tk = Bk—6(62+63+4l31) , k=1,2,3. (16)

Now we need to also define the scale-separator parameter X (on which we rely most to discriminate
between the large-scale discontinuities and the small-scale eddies) and the sharp cut-off function J; (on
which we rely to handle large-scale discontinuities):

= ——k=1,2,3 (17)
Y1
O =0 if xx<Cr otherwise & =1,k=1,2,3, (18)

where Cr is a very small value - here, 107>, With all this, the nonlinear weights o, can be defined as:

Ak

W= 3
Y14

 k=1,2,3 (19)

F. Nauleau, T. Bridel-Bertomeu, H. Beaugendre, F. Vivodtzev

where

6 3 1

= — = — = — . 2
ap 31, @ 10527 a3 1053 (20
Note that to deal with the large stencil close to the edges of the Cartesian domain, HYPERION uses

ghost cells - an illustration in two dimensions is provided on figure 1.

Y
Jj=5 60 61 62 63 71
48 59
36 47
24 35

Jj=1 12 13 14 15 23

Figure 1: Illustration of the ghost cells layer (blue cells) around the Cartesian grid in HYPERION. The numbering
of the cells is also shown. Note that the three-dimensional Cartesian meshes are handled in the same fashion, with
index 7 in the X direction evolving the fastest, followed by j in the Y direction, then k in the Z direction.

2.1.3 Approximate Riemann solvers

Once the fields have been reconstructed at each face of each cell (see paragraph 2.1.2 above), the left/right
discontinuous problem (see equation (9)) is solved approximately using a Riemann solver. The most used
approximate solvers can be grouped in three large families: Flux Difference Splitting (FDS), Flux Vector
Splitting (FVS) and Flux Type Splitting (FTS) [37, 34]. In HYPERION we focus on two types of solvers
in particular, FDS solvers that work as a finite volume method to solve the Riemann problem and FVS
Riemann solvers that combine the qualities of the other two families by separating kinematic and acoustic
scales.

Several approximate Riemann solvers have therefore been implemented in HYPERION to serve different
purpose. In the present study, similarly to the need for a reconstruction able to handle large and small
scales simultaneously, the Riemann solver we were seeking had to have the ability to behave well in both
high and low-Mach regimes (see e.g. [31]) and to not trigger the well-known carbuncle instability[25]. A
series of tests and a bibliographic study lead us to opt in for a FVS solver constructed by Liou et al., the
AUSM ™ -up [27, 28] because of its robustness and its increased level of accuracy at all speeds. Presenting
the details of the mathematical implementations is out of the scope of this paper but the interested reader
is referred to the aforementioned papers.

F. Nauleau, T. Bridel-Bertomeu, H. Beaugendre, F. Vivodtzev

/
/
/

™~ L ™~ |1 ™~ L1
(a) (b) (c)
‘ |
T - ~D\ - <
™~ =5 i S~ | L i ™~ =5 i
(d) (e) ()
e /J ’\ :\
~~ = i
(2

Figure 2: Immersed boundary method workflow - diagrams are shown in two dimensions but the extension to
three dimensions in straightforward. (a) Introduction of a tesselated object in the Cartesian mesh. (b) Detection
of the immersed cells (red), i.e. solid cells, at initialization. (c) Detection of the immersed boundary cells (blue),
i.e. solid cells with at least one fluid neighbor within the extent of the stencil, at initialization. (d) Detection of
the nearest facet to each immersed boundary cell, at initialization (e) Creation of the image points in the direction
normal to the nearest facet for each immersed boundary cell, at initialization. (f) Illustration of the neighborhood
(yellow) where fluid cells are queried for information to interpolate the values of the fields at the image points, at
each iteration of the fluid solver. (g) Illustration of the linear extrapolation from the image points to the immersed
boundary cells to fill the values allowing for the enforcement of the boundary condition at the wall of the immersed
object, at each iteration of the fluid solver.

2.2 Sharp immersed boundary conditions

To handle the presence of obstacles in the compressible flows, HYPERION uses a sharp immersed
boundary method (IBM) [33]. As mentioned in many papers, e.g. [23, 35], the sharp interface method
proves to be well suited for compressible flows because the boundary conditions at the immersed bound-
ary are taken into account directly rather than being computed indirectly via a forcing term or smoothed
with a distribution function. Originally, to handle boundary conditions at the edges of the domain, HY-
PERION uses ghost cells so there is no need to degenerate the reconstruction stencils at the edges. To
make use of the original data structures and logic of implementation as much as possible, we imple-
mented a ghost-cell based immersed boundary method as well. In the present study, we assume that the
immersed objects cannot move.

We will briefly introduce in this section the workflow for the initialization of the immersed boundary
method as it will serve as reference for future sections 3 and 4. Overall the workflow is fairly classical
[33, 6, 23, 35, 40, 41] and relies on six main steps:

¢ detection of the immersed cells, i.e. all the cells of the Cartesian mesh that find themselves inside
the immersed object - figure 2(b),

F. Nauleau, T. Bridel-Bertomeu, H. Beaugendre, F. Vivodtzev

* detection of the immersed boundary cells, that is immersed cells with at least one fluid neighbor
within the extent of the reconstruction stencil, and wherein we shall impose the right values to
enforce the boundary condition at the wall of the immersed object - figure 2(c),

* detection of the nearest facet to each immersed boundary cell in the sense of normal projection
distance - figure 2(d),

* computation of the images of each immersed boundary cell center with respect to their nearest
facet - figure 2(e),

* interpolation of the fluid variables at the image points - figure 2(f),

* linear extrapolation from the image points to the immersed boundary cells to enforce the boundary
condition at the wall of the immersed object - figure 2(g).

In HYPERION, since we assume that all immersed objects are immovable, the four first steps can be
done once during the initialization of the computation, whereas the last two steps, depending on the
instantaneous state of the fluid, are repeated at each fluid iteration.

Section 3 will present the novel algorithm used in HYPERION to make the detection of the immersed
cells (step 1) particularly inexpensive, even for three-dimensional objects and Cartesian meshes. Step 2
and 4 are quite straightforward and rely on simple geometrical notions ; to make step 3 efficient however
for large Cartesian meshes and finely discretized immersed objects, HYPERION builds a spatial-median
Bounding Volume Hierarchy (BVH) of the immersed objects to accelerate the ray-tracing-like queries
for nearest facets?. Step 5 relies on the ENO-like least-square interpolation algorithm developed by one
of the authors [4], and section 4 shall detail the strategy implemented in HYPERION to handle the large
interpolation neighborhood in a massive parallelism context. Finally, step 6 is straightforward as well
and the interested reader can find all the mathematical details in Bridel-Bertomeu [4].

3 A FAST RASTERIZATION ALGORITHM TO DETECT IMMERSED CELLS

To identify the solid cells, i.e. the cells of the Cartesian mesh that are found inside the immersed object,
the most common algorithm is a somewhat brute-force ray-casting algorithm (see e.g [18, 33]) that can
be described as follows.

From all cells in the Cartesian mesh a random ray is cast (see for example cells A and B in figure 3,
but the ray could go any direction) and the intersections between this ray and the facets of the body
are counted. If the number of intersections is odd, then the cell wherefrom the ray is cast is inside the
immersed body (for example cell B) whereas if the number of intersections is even, the originating cell
is outside the immersed body (for example cell A). The complexity of this algorithm is O (N.Ny), where
N. is the total number of cells in the Cartesian mesh and Ny is the total number of facets of the tesselated
immersed body.

For two-dimensional problems, such a complexity hardly becomes an issue. As an illustration, let us
nonetheless consider a three-dimensional worst case with a Cartesian mesh of 900 x 900 x 1300 cells
and an object with approximately 5 x 107 facets, then the algorithm runs for more than 48 hours on a
mid-2017 Intel i7 processor with 4 OpenMP threads. Naturally if the Cartesian mesh is partitioned, then

3”Find Closest Point on (Tesselated) Surface” library developed by ingowald as a spin-off of the OSPRay project - see
github.com/ingowald/closestSurfacePointQueries

F. Nauleau, T. Bridel-Bertomeu, H. Beaugendre, F. Vivodtzev

Figure 3: Illustration of the tesselation of a two-dimensional curve and of the simple ray-casting algorithm for the
identification of immersed cells.

each partition handles its own set of rays and the time-to-completion drops to the order of magnitude of
tens of minutes, but it still is not a reasonable performance - especially if one thinks of the possibility of
having a moving object, for which the solid cells might change at each iteration of the fluid solver.

The technical name of the “’problem that consists in finding the solid cells” is point classification: in our
case, we want to classify the cell centers according to whether they are inside or outside some shell. Point
classification problems fall within the theory of computational geometry, which pushed the second author
to associate himself with David Eberly [36] from Geometric Tools* to develop a better algorithm than
the aforementioned brute-force one - this section is dedicated to the presentation of this new algorithm.

The ray-casting algorithm simply needs the immersed object to be defined by the discretization of its
outermost shell - a segment-based tesselation in two dimensions or a triangle-based tesselation in three
dimensions. The new algorithm relies on a tesselation of the outermost shell and on the existence of
a tetrahedralization (triangulation) of the inside of the object in three (two) dimensions - this shift in
paradigm is illustrated on figure 4.

Once a proper tetrahedralization (triangulation) has been obtained, the algorithm has the following steps
- note that a description is provided in the three-dimensional case but the algorithm applies similarly in
two dimensions.

e Step 1 - for each tetrahedron, create its smallest axis-aligned bounding box (AABBs).

function compute tetrahedra AABB
for each tetrahedron t

vl, v2, v3, v4 := the four vertices of the t
t_min := vl
t_max := t_max

for each vertex v
for each dimension d
if coordinate d of v < coordinate d of t_min

4See https://www.geometrictools.con for more information about the company

10

F. Nauleau, T. Bridel-Bertomeu, H. Beaugendre, F. Vivodtzev

Figure 4: Discretization of the immersed objects necessary (a) for the simple ray-casting algorithm and (b) for the
new point classification algorithm. The three-dimensional tetrahedralization required by the new algorithm has to
be generated beforehand and is not handled by HYPERION.

then

coordinate d of t_min := coordinate d of v
else if coordinate d of v > coordinate d of t_max
then

coordinate d of t_max := coordinate d of v
end if

end for each
end for each
end for each
end function

e Step 2 - each AABB is clipped/culled against the underlying Cartesian mesh to ensure that when
searching within the bounding boxes, the grid points are within range of the Cartesian mesh
bounds. Note that the “underlying Cartesian mesh” can very well be a local piece of mesh in
the context of MPI partitioning, making this point classification inherently adapted to distributed
parallelism.

function cull tetrahedra AABB
m_min, m_max := lower, upper vertex of Cartesian box
for each tetrahedron t
t_min, t_max := lower, upper vertex of t bounding box
for each dimension d
coordinate d of t_min :=
max between
| coordinate d of t_min,
| coordinate d of m_min
coordinate d of t_max :=
min between
| coordinate d of t_max,

11

F. Nauleau, T. Bridel-Bertomeu, H. Beaugendre, F. Vivodtzev

| coordinate d of m_max
if coordinate d of t_min > coordinate d of t_max
then
declare t invalid
end if
end for each
end for each
end function

e Step 3 - the tetrahedra vertices and bounding boxes are then transformed to the (i, j,k) grid coor-
dinate system.

function transform to grid ijk

m_min, m_max := lower, upper vertex
of Cartesian box
n.0, n.1l, n.2 := number of cells

of Cartesian box in each dimension
for each dimension d
factor.d := (n.d - 1) / (
coordinate d of m max -
coordinate d of m_min
)
end for each
for each tetrahedron t
t_min, t_max := lower, upper vertex
of t bounding box
for each dimension d
g_t_min := ceiling of factor.d * (
coordinate d of t_min -
coordinate d of m_min
)
g_t_max := floor of factor.d * (
coordinate d of t_max -
coordinate d of m_min
)
end for each
end for each
end function

e Step 4 - each grid-coordinate bounding box contains a relatively small number of the Cartesian grid
cell centers, hence we can iterate over those with a triple loop in k, then j, then i as per HYPERION
grid ordering. For a constant (j,k) in the grid box, a line segment containing cell centers with
varying i is obtained. Note that one possible implementation of the function determining whether
a point is in a tetrahedron can be found in [36] and shall not be repeated here.

function rasterize

12

F. Nauleau, T. Bridel-Bertomeu, H. Beaugendre, F. Vivodtzev

n.0, n.1, n.2 := number of cells
of Cartesian box in each dimension
for each tetrahedron t
g_t_min, g_t_max := lower, upper vertex
of t bounding box in ijk coordinates
for k from g_t_min.2 to g_t_max.2
for j from g_t_min.l to g_t_max.1l
for 10 from g_t_min.0 to g_t_max.0
if (10,j,k) in tetrahedron t
then
break for 10
end if
end for
if 10 > g_t_max.0
then
cycle for j
end if
for i from g_t_max.0 down to i0
if (i,3,k) in tetrahedron t
then
break for i
end if
end for
base := n.0 * (7 + n.1 * k)
for 1 from 10 to 1
n := 1 + base
flag cell center of index n
as inside tetrahedron t
end for
end for
end for
end for each
end function

e Step 5 - the i-values are searched for the first and last cell centers that are inside each tetrahedron,
if any, which yields a set of flagged (i, j, k) that can be said to be inside the immersed object.

As mentioned, the algorithm can be easily adapted to a code working in parallel. For a multithreaded
code, then the tetrahedra can be split among the different threads to share the workload. There is a chance
that two threads might try to flag the same (i, j, k) to the set of solid cells. In particular this can happen
if a cell center is on the shared face of a pair of tetrahedra (or close to that face because of numerical
rounding errors). However, there is no need for a critical section or an atomic write: first, from the
perspective of either thread the cell center will be found to be inside the immersed object, and anyway
the (i, j, k) grid coordinates are 32-bit integers that are written atomically by nature.

If the number of tetrahedra in the discretization of the object is noted N,, then the complexity of this

13

F. Nauleau, T. Bridel-Bertomeu, H. Beaugendre, F. Vivodtzev

algorithm is, mostly, O(N;). For the same worst-case problem as before, the time-to-completion falls
to 8.5 seconds on a single OpenMP thread and the timings for 2, 4, 8 and 16 OpenMP threads are 4.3
seconds, 2.6 seconds, 2.1 seconds and 2.0 seconds respectively (versus = 48 hours for the brute-force
algorithm for 4 OpenMP threads).

4 MIGRATABLE TASKS FOR THE MASSIVE PARALLELIZATION OF THE RECONSTRUC-
TION ALGORITHM

As mentioned in section 2.2, the interpolation of the fluid values at each image point (step 5) relies on
the least-square ENO-like interpolation discussed in details in the paper by Bridel-Bertomeu [4]. A short
study in the latter paper mentions that for the algorithm to be robust (i.e for the least-square matrix to
be well enough conditioned), at least 25 neighbors are necessary in two dimensions for a third order
interpolation. The same kind of study conducted in three dimensions shows that at least 85 neighbors are
required for a third order interpolation so that the least-square matrix reaches its asymptotic minimum
conditioning.

Furthermore, to balance the number of neighbors picked in each direction around the cell of interest, HY-
PERION implements a spiral walk (see [4], figure 4(a)): with that strategy, getting to 25 (85) neighbors
in two (three) dimensions means having access to at least three layers of cells around the cell of interest.
However, considering that such cells of interest are by nature in proximity to the immersed objects and
because we cannot consider the immersed cells as valid neighbors in the interpolation, acquiring the
information from enough valid neighbors can quickly lead to accessing the fifth or sixth layer of cells
away from the cell of interest (e.g. for fourth or fifth order interpolation matching the order of the TENO
reconstruction described in paragraph 2.1.2).

In a sequential, or even in a shared-memory parallelism context, accessing cells that are far away from
the cell of interest is not a challenge - the algorithm presented in [4] could be implemented directly
without any modifications in a purely sequential or only OpenMP version of HYPERION. In a distributed
parallelism context however, things become rather tricky if one aims at minimizing the computational
overhead related to communications between processes and/or the overall memory use of the application,
as is the goal for HYPERION.

If only in terms of memory use, note that out of consistency, in HYPERION the size of the MPI halo
equals the number of ghost cells used at the edges of the domain - see figure 5. Therefore, if we consider
a rather common mesh size of 5123 cells, and if we attempt to gain access to cells six layers away with a
halo of size 6, the actual mesh handled by HYPERION has size (51242 x 6)3, which, if we only account
for the five conservative variables, means an overhead of about 3 Gi in memory. HYPERION efficiency
is around 1 to 1.5 uscpy/it/cell, hence using a size 6 halo tends to introduce an overhead of about 10 scpy
at each iteration.

With these considerations in mind, along with the fact that having e.g. size 6 halos is highly detrimental
to the performance of the MPI communications (although it has not been quantitatively evaluated in
the present study), we worked on an algorithm that would not rely on the MPI halos at all in order to
perform well in conjunction with any kind of reconstruction stencil. Inspired by the spiral "walk” used in
a sequential context to gather information from enough valid neighbors for the least-square interpolation,
we turned ourselves towards a migratable task paradigm.

In this paradigm, the first ingredient is a fask. In our context, let us remember that for each image point

14

F. Nauleau, T. Bridel-Bertomeu, H. Beaugendre, F. Vivodtzev

Figure 5: Illustration of the Cartesian partitioning of the Cartesian mesh in HYPERION. The overlapping halos
(of size 1 in this case) ensuring communications between neighboring processes are also represented. Note that
the numbering of the MPI processes is done the same way as the numbering of the fluid cells.

we want to gather information from enough valid” neighbors to have a well-conditioned least-square
matrix (see figures 2(f) and 6(a)).

A
&/

26 | 25| 24 | 23 (222120 35
26 [25 [24 (23 | 22 | 21 | 20 [35

27 (13 |12 |11 (10| 9 [19| 34

27 | 13 (12| 11 | 10 e 19 | 34
14 (4|3 |2]8]18]33 \<"‘1;' ﬁ;_‘ \2\ ‘ ~1~8\\ -
\ 50 1|7 |17 32 : \ :)_J / 175 »
X 6 | 16|31 R e Vi6 !
B = : 15 | 30}
28 | 29 E U 28 |29
"‘ NG
(a) (b)

Figure 6: (a) Zoom on the neighborhood of an immersed boundary cell image and the corresponding surrounding
cells numbering for the spiral walk. (b) [llustration of the spiral walk task in the migratable task algorithm and of
the influence of partitioning thereupon - the halos are omitted as the algorithm does not make use of them.

To do so, we emit a probe that will march the surrounding cells in a spiral motion: for each valid”
neighbor (that is not an immersed cell), the index of the cell and the values of the fluid variables are
stored in the probe structure before it goes on. This marching is the fask in the migratable task paradigm

15

F. Nauleau, T. Bridel-Bertomeu, H. Beaugendre, F. Vivodtzev

- see figure 6(b) - which is supported by a simple data structure:

struct _probe_task_state
status // status of the marching
(x,v,2z) // current coordinate of the head of the probe

coords[] // coordinates of valid neighbors, accumulated
values[] // fluid variables in the valid neighbors, accumulated

origin_rank // rank of the processes wherefrom the probe originates
rank // rank of the process the probe needs to be sent to, if any

count // current number of neighbors
end struct

Because of the partitioning of the Cartesian mesh, several, if not all, processes own immersed boundary
cells and must therefore emit probes. In terms of implementation, each process has a stack of such tasks
that it works through either sequentially or in parallel with multiple shared-memory OpenMP threads.
During its march, if a probe next step has to be taken on a different process (illustrated on figure 6(b)),
then a message is sent from its current owner to the neighboring process containing the entire probe
structure ; in so doing, the probe is popped from the previous owner stack of tasks and pushed to the
neighbor process stack that can resume the walk of the probe. This march of each probe continues until
it has found enough valid neighbors, per the user request, at which point the whole structure of the probe
is sent back to the process it originated from so the least-square interpolation can take place and the
immersed boundary cell can be populated with values enforcing the immersed boundary condition [4].

Note that during the course of the algorithm, no process can predict with simple logic whether it is
going to receive a task from a neighbor or whether it will have to send one of its tasks to a neighbor -
since no process knows whether to expect a message, they all wait for messages asynchronously while
handling the tasks on their stacks. This poses a well-known problem in parallel computations, namely a
termination issue. Since no process knows to expect a message, if nothing is done all the processes will
eventually finish working on their own tasks and wait indefinitely for messages from their neighbors. To
prevent such an infinite loop from occurring in HYPERION, we implemented the algorithm of Francez
et al. [9] to achieve distributed termination without introducing any new communication.

The entire pseudocode algorithm is described below.

while not terminated
$MASTER THREAD
{
while to_send_stack not empty
e := pop to_send_stack
async send e to e.rank
sent_stack push e
end while
while sent_stack not empty
check sent request has gone through

16

F. Nauleau, T. Bridel-Bertomeu, H. Beaugendre, F. Vivodtzev

end while
probe all sources for any message
if message
new_e := deserialize message
stack push new_e
end if
terminated ?= francez termination algorithm
}
$END MASTER THREAD
while stack not empty
e := pop stack
until enough neighbors
go to the next cell in the spiral
if next cell is solid or ghost
then
skip
else
if next cell on current process
e.coords append cell center coordinates
e.values append cell values
increment e.count
if enough neighbors
e.status := SUCCESS
break until

end if
else
e.rank := neighbor rank
break until
end if
end if
end until

if e.status == SUCCESS
e.rank := e.origin_rank

end if

if e.status == SUCCESS and current process rank == e.origin_rank
solve least square problem
compute immersed ghost cell value

else
to_send_stack push e

end if

end while
end do

This migratable task strategy allowed us to use the ENO-like interpolation algorithm with large neigh-

17

F. Nauleau, T. Bridel-Bertomeu, H. Beaugendre, F. Vivodtzev

4000 !
/®
1
1
Il
3000 !
1
o II
7 /
$ 2000
(O] 1
o /
(Vp] II
II
1000 ,/‘
———— —.//
0 @®-—-——- *---—-- -@-—===s o
109 101 102 103

Number of MPI processes

Figure 7: Speed up achieved for distributed parallelism with HYPERION and the migratable task algorithm - ideal
speed-up (dashed line) versus actual speed-up (blue dots). Data collected for a single immersed body using AMD
Rome processors.

borhoods in massively parallel computations with guaranteed stability, yielding a satisfactory speed-up
up to 4096 processes as shown on figure 7.

5 TOWARDS HIGH-FIDELITY SIMULATIONS

The two algorithms/strategies presented in sections 3 and 4 made possible running massively parallel
simulations in three dimensions with HYPERION: before the introduction of the former, detecting solid
cells on realistic meshes of the order of 10% cells would take several days, and before the introduction
of the latter, three-dimensional computations with immersed objects would be too expensive and, most
often, would fail altogether during the spiral walks. In the high Mach and Reynolds numbers regimes
where this study places itself, direct numerical simulations (DNS) are out of reach because of their
prohibitive computational cost. However, we aim at running large eddy simulations (LES) with an ad
hoc subgrid-scale model to improve the predictive capabilities of HYPERION in the compressible regime
even on coarse meshes - gaining the ability to run three-dimensional simulations was a first step in that
direction.

An in-depth presentation of the LES equations for compressible flows is out of the scope of this paper
(the interested reader is referred e.g. to Garnier ef al. [16]), but recall that solving the LES equations
implies using a filtered version of the compressible Navier-Stokes equations (1)-(2), among which the
momentum equations now read:

2D

opa; | Opiid; 9p 9o _ 0ty 0 (.
o o, am oax, ox o (57 -5u)

18

F. Nauleau, T. Bridel-Bertomeu, H. Beaugendre, F. Vivodtzev

where the ~ overset denotes Favre averaging, the - overset denotes Reynolds averaging, and G ; depends
on the computable rate-of-strain tensor:

= = & 2. & & 1 81- oii ;
cij =u(T) <25ij— 35ij5kk> , Sij= 5 (Ebcuj+ aﬁf) . (22)

All overset variables are computable whereas we need a closure for the subgrid-scale stress tensor T;;.
In HYPERION, we follow a Boussinesq type hypothesis [2] that leads to the subgrid-scale stress tensor
having the following mathematical form:

1 _ P D
Tij— gsiﬂkk = —2PVsgs <Sij - 35ij5kk> , (23)
where Vo represents a scalar subgrid viscosity that is left to be modelled. In the present study we rely
on the Wall-Adapting Local Eddy-viscosity model (WALE) by Ducros et al. [8] to run preliminary tests

with the LES version of HYPERION.

5.1 Taylor-Green Vortex

Before trying to evaluate the quality of the LES computations in the presence of immersed obstacles,
let us run a very classical viscous test case that will allow us to check the implementation of the WALE
model.

We are therefore considering the case of a Taylor-Green vortex which set-up and reference solution can
be obtained from the 3" international workshop on higher-order CFD methods [7]. The domain is a
periodic cube of dimensions [—7, 7|3, and the initial solution is given by the following expressions:

u = sin(x)cos(y)cos(z),

v = —cos(x)sin(y)cos(z),

w = 0, (24)
p = YMIOZO + 1—16 (cos(2x) +cos(2y)) (cos(2z) +2),

p = Wip.

In this problem, we do not intend to validate in any way the behavior of the immersed boundaries al-
gorithms. Rather, we shall inspect the temporal evolution of the kinetic energy Ey and of the enstrophy
€ integrated over the domain and compare it to the reference solution [7]. Note that the mathematical
expression used in this study for the kinetic energy is:

I

Ex A3

1 2 2 2
)y 5 Pijk (W ja+Viju T Wijw) (25)
ik

and that of the enstrophy is:

19

F. Nauleau, T. Bridel-Bertomeu, H. Beaugendre, F. Vivodtzev

1 1 2 2 2
€=]W Z EpiJ,k (mx;i,j,k =+ my;i,j,k + wz;i,j,k)) (26)
i7j7k

where N stands for the number of cells along one side of the domain (assuming the Cartesian mesh
is homogeneous), and ® = V X u is the vorticity. To observe the convergence of the solution towards
the reference solution, computations results on meshes of sizes 64> and 5123 are shown here. The

computations were furthermore run using the AUSM™-up Riemann solver in conjunction with the fifth-
order TENO reconstruction scheme.

(a) (b)

Figure 8: Snapshots of the state of the Taylor-Green vortex after (a) 1 characteristic time and (b) 20 characteristic
times on the 64> mesh. Isocontours of enstrophy are represented, colored by the magnitude of velocity.

Figure 8 presents the three-dimensional structures present in both the coarse and the fine flow as isocon-
tours of the Q-criterion colored by the magnitude of the vorticity. As expected, the turbulence is allowed
to develop itself down to much smaller scales on the fine mesh.

Figure 9 introduces a more quantitative comparison between the present results and both the reference
spectral computation conducted on a 512° mesh in [7] and some high-order reference computations from
[17]. The results are satisfactory and show the convergence towards the reference for both metrics -
the kinetic energy, figure 9(a) and the enstrophy, figure 9(b). The results in terms of enstrophy seem
further away but in another exhaustive study (unpublished yet) the authors show the prime importance
of the approximate Riemann solver on the quality of the enstrophy production in a finite-volume code,
and although the AUSM™-up solver is particularly adapted at handling all-speed flows with hypersonic
regions, it might not be the ideal solver for fine turbulence behavior - such a discussion is however out
of the scope of this paper.

20

F. Nauleau, T. Bridel-Bertomeu, H. Beaugendre, F. Vivodtzev

12

0.14 — Ref -
w— Ref - spectral B]l:e: ;pe:;;al
0.12 e Present - N=64 10 ef - N=
Q == Present - N=512 + Ref - N=256
0.1 > = Present - N=64
: -g. : = Present - N=512
5008 S 6 + Ref-N=64
.U -
E 0.06 3
g R 4
2 0.04
0.02 2
0 .
0 2 4 6 8 10 12 14 16 18 0 2 4 6 8 10 12 14 16 18 20
Time Time
(a) (b)

Figure 9: Comparison of the temporal evolution of (a) the kinetic energy (see equation (25)) and (b) the enstrophy
(see equation (26)) against the 5123 spectral computation from [7] (black line) and the high-order computations
from [17] (symbols).

5.2 Double cone

With the implementation of the subgrid-scale model validated by the turbulence testcase discussed in
paragraph 5.1, we move on to the study of the flow around two documented configurations in supersonic
or hypersonic regimes.

193.68

& >

10.01
0.0

S
92.08 R /

<€ »

85.88 261.85

ot
[$38
°

v

Figure 10: Geometrical details of the double-cone configuration.

For the first immersed boundary condition testcase, the hypersonic flow over an axisymmetric double
cone configuration (see figure 10) is studied at Mach number 12.2 and Reynolds number 14 x 10°.
The wall temperature is fixed at 1.757.. The results presented below correspond to meshes made of
1,200,000 and 4,000,000 cells, qualified of coarse and fine, respectively (as it is an axisymmetric ob-
stacle, the simulation itself has been treated as a two-dimensional, axisymmetric simulation).

F. Nauleau, T. Bridel-Bertomeu, H. Beaugendre, F. Vivodtzev

A qualitative visualization of the resulting flow is provided on figure 11 in the form of a numerical
Schlieren image. It mostly shows the regions where strong changes in density occur, allowing the user to
visualize the shock and contact waves, and, like in the present case, the boundary layer developing along
the wall. An inset has been added to the figure to put the light on the lambda-shock pattern found after
the boundary layer passes the recirculation region and reattaches itself to the wall of the second cone.

Figure 11: Numerical Schlieren imaging of the flow around the double cone configuration. The inset zooms in on
the lambda-shock pattern found after the recirculation region at the change of wall angle.

In a more quantitative manner, the wall pressure and the wall heat flux are compared against the experi-
mental results obtained by MacLean er al. [30] - see figure 12(a) and (b). Without much effort, the wall
pressure is correctly predicted - figure 12(a) - because it is mostly driven by the inviscid behavior of the
simulation and does not depend too much on the resolution of the near-wall flow. In contrast, the viscous
heat flux is not as well predicted because boundary layers are not resolved properly with the immersed
boundary method implemented in HYPERION. Even with a fine mesh, although the peak of heat flux is
correctly captured both in terms of coordinates and magnitude, the heat flux levels after the reattachment
of the boundary layer are markedly underestimated. This is a well known shortcoming of any immersed
boundary method, and a future study will be dedicated to correcting it with the help of ad hoc wall laws.

5.3 Flow study around a double ellipsoid configuration

The second immersed boundary condition testcase is the fully three-dimensional flow around a double
ellipsoid shape [1] described mathematically by the following equations (see figure 13):

22

F. Nauleau, T. Bridel-Bertomeu, H. Beaugendre, F. Vivodtzev

45 —Ref 50 —Ref
—WALE _fine_mesh WALE_coarse_mesh
40 WALE_coarse_mesh —WALE_fine_mesh
40 =
© 35 §
~
3 30
2 330
2 25 S
)
A 20 T 20
15 f\\
10
10 e
T 0. ——
0 002 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
X (meter) X (meter)
(a) (b)

Figure 12: (a) Pressure coefficient and (b) heat flux obtained at the wall of the double cone. Comparison between
the results obtained presently on the coarse and fine meshes (orange and blue line, respectively) and the reference
solution from MacLean er al. [30] (black line).

x \2 Yy \2 Z \2
< —1
x<0, (006) (oozs) +(0.015)
: ')+ (os) -
< > [— =1
x<0,220, (0035) (0.0175 10025 27
) -
<x<0. =
0<x<0016, (002 0.015 !
y z \?
>0, (5075) + (505 =1
L= 0.0175 0.025
N/
>
X
0.06
>l =)
0.016

Figure 13: Geometrical details of the double ellipsoid configuration.

For that flow, the Mach number is set at 8.15, the Reynolds number is set at 16.7 x 10° and the freestream
angle of attack is set at 30°. The Cartesian mesh contains approximately 7 x 107 cells, and the double
ellipsoid object is tesselated using approximately 2 x 10° triangles; the computation was conducted on
4096 AMD Rome processors, using 2048 MPI processes and 2 OpenMP threads per process, and lasted
approximately 48 hours before the wall quantities could be said to be converged (see below). Note that
this computation, both in terms of manipulation of the immersed object and in terms of computational

23

F. Nauleau, T. Bridel-Bertomeu, H. Beaugendre, F. Vivodtzev

performance, is made possible only thanks to the two algorithms presented above in sections 3 and 4
respectively - without massive parallelism, the time-to-results for this computation would have been
unrealistic.

A first quantitative visualization of the flow is given in figure 14, where both numerical Schlieren imaging
and three-dimensional isocontours of the Q-criterion are presented. The strong shock waves can be
clearly seen around the object whereas the wake seems characterized by multiple contact waves and
large-scale turbulent structures that the LES simulation is able to capture, as expected.

Figure 14: Illustration of the flow around the double ellipsoid immersed object with a 30° angle of attack. The
walls of the visualization domain are colored using the numerical Schlieren imaging technique, and the wake of
the double ellipsoid is shown using isocontours of Q-criterion, colored by the magnitude of the vorticity.

Similarly to the study conducted for the previous test case (see paragraph 5.2), figure 15 presents the
pressure coefficient and the Stanton number at the wall of the double ellipsoid. The conclusions are
similar to the ones for the double cone flow. The pressure coefficient is satisfactorily predicted - the
experimental data does not allow to conclude on the nature of the oscillations observed in the vicinity
of the recirculation region (when the second ellipsoid starts, around x ~ 0.0). The heat flux accuracy is
however fairly low again, mostly because of the lack of alignment between the Cartesian mesh and the
object wall causing the boundary layers to be poorly described. This phenomenon and possible fixes will
be, as aforementioned, explored in a future study.

6 CONCLUSIONS

In this paper, we present some work related to the immersed boundary method and in particular to the
adaption of the method for massively parallel computations. A novel algorithm based on the theory of

24

F. Nauleau, T. Bridel-Bertomeu, H. Beaugendre, F. Vivodtzev

1.8 : EZ;WALE 0.004 = ST WALE
Ge s Ref
Lory * Ref . 0.002
1.4 5
1.29 T
L = 0 o~ M '
o 1 2 ¥
¥ o o
0.8 £ -0.002 ' e o o ° o o .
0.6 e, £ ot *
' D i S -0.004{ %
0.4{, L S .
" \M“v»———w;
o ; -0.006
0.2 - 0.02- 0.01-
005 004 003 002 001 0 001 002 0.025-0.02-0.015-0.01-0.005 to 0.005 0.01 0.015 0.02
x (meter) X (meter)
(@) (b)

Figure 15: (a) Pressure coefficient on both the pressure and the suction sides and (b) Stanton number on the
pressure side of the double ellipsoid. Comparison between the present computations (green and blue lines) and the
experimental reference data (black dots) extracted from [1].

computational geometry is introduced to drastically decrease the time necessary to identify a tesselated
immersed body in a Cartesian box - from beyond 48 hours to a few seconds. The steps of this algorithm
are detailed exhaustively and an example implementation of its non-trivial functions is provided. Still in
order to lift major limitations to conducting three-dimensional simulations involving immersed objects
on massive clusters, a second algorithm is presented that make the interpolation step of the immersed
boundary workflow possible for any number of MPI processes. This algorithm represents the parallel
extension of the works presented in [4] about an ENO-like least-square reconstruction mandatory to
handle strong shocks in the vicinity of immersed bodies subject to hypersonic flows.

As those two new algorithms finally make massively parallel three-dimensional computations accessi-
ble with HYPERION, the improvement of the predictive capabilities of the code are then discussed.
Rather than conducting direct numerical simulations that stay, even today, unreachable because of their
prohibitive computational cost at high Reynolds numbers, HYPERION is turned towards large eddy
simulations (LES). Preliminary axisymmetric and three-dimensional simulations conducted show that
even if adequate subgrid-scale modeling allow for the prediction of large-scale turbulent structures on
relatively coarse mesh, it is not enough to capture accurately the near-wall viscous phenomena. The
lack of alignment between the Cartesian grid (fluid grid) and the wall of the immersed body makes for
poorly resolved boundary layers which, in turn, yield poor performance when it comes to predicting the
viscous-driven wall quantities such as heat flux and shear stress. A future study shall be dedicated to
investigating these shortcomings and proposing solutions, perhaps axed towards the use of wall laws.

7 ACKNOWLEDGEMENTS

The authors want to address special thanks to David H. Eberly for his support in designing the rasteriza-
tion algorithm and to Cédric Augonnet for his help in designing the migratable task algorithm.
References

[1] D. Aymer, T. Alziary, L. D. Luca, and C. Carlomagno. Experimental study of the flow around a dou-
ble ellipsoid configuration. In Hypersonic Flows for Reentry Problems, pages 335-357. Springer,
Berlin, Heidelberg, 1991.

25

F. Nauleau, T. Bridel-Bertomeu, H. Beaugendre, F. Vivodtzev

[2] Joseph Boussinesq. Essai sur la théorie des eaux courantes. Impr. nationale, 1877.

[3] Pierre Brenner. Three-dimensional aerodynamics with moving bodies applied to solid propellant.
In 27th Joint Propulsion Conference, page 2304, 1991.

[4] Thibault Bridel-Bertomeu. Immersed boundary conditions for hypersonic flows using eno-like
least-square reconstruction. Computers & Fluids, 215:104794, 2021.

[5] B Capra, J Moran, M Brown, R Boyce, E Trifoni, A Schettino, C Purpura, A Martucci, and R Gol-
lan. Aerothermal analysis of 3d concave cone in hypersonic flow in scirocco.

[6] Cheng Chi, Bok Jik Lee, and Hong G Im. An improved ghost-cell immersed boundary method for
compressible flow simulations. International Journal for Numerical Methods in Fluids, 83(2):132—
148, 2017.

[7] L Diosady and S Murman. Case 3.3: Taylor green vortex evolution. In Case Summary for 3rd
International Workshop on Higher-Order CFD Methods, 2015.

[8] F Ducros, F Nicoud, and Thierry Poinsot. Wall-adapting local eddy-viscosity models for simula-
tions in complex geometries. Numerical Methods for Fluid Dynamics VI, pages 293-299, 1998.

[9] Nissim Francez and Michael Rodeh. Achieving distributed termination without freezing. [EEE
Transactions on Software Engineering, SE-8:287-292, 1982.

[10] Lin Fu. A low-dissipation finite-volume method based on a new teno shock-capturing scheme.
Computer Physics Communications, 235:25-39, 2019.

[11] Lin Fu. A very-high-order teno scheme for all-speed gas dynamics and turbulence. Computer
Physics Communications, 244:117-131, 2019.

[12] Lin Fu, Xiangyu Y Hu, and Nikolaus A Adams. A family of high-order targeted eno schemes for
compressible-fluid simulations. Journal of Computational Physics, 305:333-359, 2016.

[13] Lin Fu, Xiangyu Y Hu, and Nikolaus A Adams. Targeted eno schemes with tailored resolution
property for hyperbolic conservation laws. Journal of Computational Physics, 349:97-121, 2017.

[14] Lin Fu, Xiangyu Y Hu, and Nikolaus A Adams. A new class of adaptive high-order targeted eno
schemes for hyperbolic conservation laws. Journal of Computational Physics, 374:724-751, 2018.

[15] Mario De Stefano Fumo, Roberto Scigliano, Marika Belardo, Giuseppe Rufolo, Angelo Esposito,
and Mauro Linari. Aero-thermal post flight analysis of ixv control surfaces. 2015.

[16] E. Garnier, N. Adams, and P. Sagaut. Large Eddy Simulation for Compressible Flows. Springer,
2009.

[17] Giorgio Giangaspero, Edwin van der Weide, MH Carpenter, and K Mattsson. Case c3. 3: Taylor-
green vortex. In Case Summary for 3rd Int. Workshop on Higher-Order CFD Methods. NASA,
2015.

[18] Eric Haines. Point in polygon strategies. Graphics Gems, 4:24—46, 1994.

[19] Andrew K Henrick, Tariq D Aslam, and Joseph M Powers. Mapped weighted essentially non-
oscillatory schemes: achieving optimal order near critical points. Journal of Computational
Physics, 207(2):542-567, 2005.

26

F. Nauleau, T. Bridel-Bertomeu, H. Beaugendre, F. Vivodtzev

[20] XY Hu and Nikolaus A Adams. Scale separation for implicit large eddy simulation. Journal of
Computational Physics, 230(19):7240-7249, 2011.

[21] XY Hu, Q Wang, and Nikolaus A Adams. An adaptive central-upwind weighted essentially non-
oscillatory scheme. Journal of Computational Physics, 229(23):8952-8965, 2010.

[22] Guang-Shan Jiang and Chi-Wang Shu. Efficient implementation of weighted eno schemes. Journal
of computational physics, 126(1):202-228, 1996.

[23] M Ehsan Khalili, Martin Larsson, and Bernhard Miiller. High-order ghost-point immersed bound-
ary method for viscous compressible flows based on summation-by-parts operators. International
Journal for Numerical Methods in Fluids, 89(7):256-282, 2019.

[24] Gilbert F Kinney and Kenneth J Graham. Explosive shocks in air. Springer Science & Business
Media, 2013.

[25] Keiichi Kitamura, Eiji Shima, and Philip L Roe. Carbuncle phenomena and other shock anomalies
in three dimensions. AIAA journal, 50(12):2655-2669, 2012.

[26] Randall J LeVeque et al. Finite volume methods for hyperbolic problems, volume 31. Cambridge
university press, 2002.

[27] Meng-Sing Liou. A sequel to ausm: Ausm+. Journal of computational Physics, 129(2):364—-382,
1996.

[28] Meng-Sing Liou. A sequel to ausm, part ii: Ausm+-up for all speeds. Journal of computational
physics, 214(1):137-170, 2006.

[29] Xu-g Liu, Stanley Osher, and Tony Chan. Weighted essentially non-oscillatory schemes. Journal
of computational physics, 115(1):200-212, 1994.

[30] M. MacLean, M. Holden, and A. Dufrene. Comparison between cfd and measurements for real-gas
effects on laminar shock wave boundary layer interaction. In AIAA Aviation, Atlanta GA, 2014.

[31] Walter T Maier, Jacob T Needels, Catarina Garbacz, Fidbio Morgado, Juan J Alonso, and Marco
Fossati. Su2-nemo: An open-source framework for high-mach nonequilibrium multi-species flows.
Aerospace, 8(7):193, 2021.

[32] Katate Masatsuka. I do Like CFD, vol. 1, volume 1. Lulu. com, 2013.

[33] Rajat Mittal and Gianluca laccarino. Immersed boundary methods. Annu. Rev. Fluid Mech.,
37:239-261, 2005.

[34] Feng Qu, Di Sun, Qingsong Liu, and Jungiang Bai. A review of riemann solvers for hypersonic
flows. Archives of Computational Methods in Engineering, pages 1-30, 2021.

[35] Yegao Qu, Ruchao Shi, and Romesh C Batra. An immersed boundary formulation for simulating
high-speed compressible viscous flows with moving solids. Journal of Computational Physics,
354:672-691, 2018.

[36] Philip Schneider and David H Eberly. Geometric tools for computer graphics. Elsevier, 2002.

[37] Eleuterio F Toro. Riemann solvers and numerical methods for fluid dynamics: a practical intro-
duction. Springer Science & Business Media, 2013.

27

F. Nauleau, T. Bridel-Bertomeu, H. Beaugendre, F. Vivodtzev

[38] Li Wang, Gaetano MD Currao, Feng Han, Andrew J Neely, John Young, and Fang-Bao Tian.
An immersed boundary method for fluid—structure interaction with compressible multiphase flows.
Journal of Computational Physics, 346:131-151, 2017.

[39] Frank M White and Isla Corfield. Viscous fluid flow, volume 3. McGraw-Hill New York, 2006.

[40] Mehrdad Yousefzadeh and Ilenia Battiato. High order ghost-cell immersed boundary method for
generalized boundary conditions. International Journal of Heat and Mass Transfer, 137:585-598,
2019.

[41] Yang Zhang, Xinglong Fang, Jianfeng Zou, Xing Shi, Zhenhai Ma, and Yao Zheng. Numerical sim-
ulations of shock/obstacle interactions using an improved ghost-cell immersed boundary method.
Computers & Fluids, 182:128-143, 2019.

28

